

# Reviews

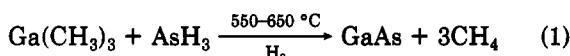
## Organometallic Precursors in the Growth of Epitaxial Thin Films of Groups III-V Semiconductors by Metal-Organic Chemical Vapor Deposition

P. Zanella,\* G. Rossetto, N. Brianese, F. Ossola, and M. Porchia

*Istituto di Chimica e Tecnologia dei Radioelementi CNR, Corso Stati Uniti, 4,  
35100 Padua, Italy*

J. O. Williams

*Solid State Chemistry Group, Department of Chemistry, UMIST, P.O. Box 88,  
Manchester M60 1QD, United Kingdom*


Received May 16, 1990. Revised Manuscript Received December 7, 1990

Metal-organic chemical vapor deposition (MOCVD) can now be used routinely for the preparation of a wide variety of groups III-V semiconductor materials. Ga- and In-based binary (e.g., GaAs, InP), ternary (e.g.,  $In_xGa_{1-x}As$ ), and quaternary (e.g.,  $In_xGa_{1-x}P_yAs_{1-y}$ ) compounds may be prepared as epitaxial layers ranging in thickness from a few angstroms to several microns for device applications. However, an understanding of the chemistry involved in the gas phase and at growing surfaces during MOCVD is at a primitive level despite the progress of the past few years. In this account we shall review recent progress in the use of organometallic precursors for MOCVD. The purity of these starting materials will be considered in relation to the quality of resulting epitaxial layers. Reaction mechanisms involved in their decomposition and reactivity both in the gas phase and at substrate surfaces will be discussed. Carbon incorporation is comprehensively covered, and growth using alternative group III and group V precursors together with the decomposition reactivity of these reagents is reviewed. The prospects for chemists in this research field are excellent, and in our opinion they are essential to its further development and extension into hitherto unexplored territories.

### Introduction

Epitaxial thin films of groups III-V semiconductor materials are playing an increasingly important role in the development of electronic and optoelectronic devices.<sup>1</sup> The results obtained by in-depth investigations not only have been successfully extended to similar families of semiconductor materials (e.g., II-VI) but also appear promising for application in other emerging areas (viz., superconductivity, metal coatings, and ceramic materials).<sup>2</sup> To be suitable for the fabrication of electronic devices, thin epitaxial films of III-V materials must be prepared under very stringent conditions of chemical purity and structural and morphological perfection. Such conditions may be attained only by a few sophisticated deposition methods such as MOVPE (metal organic vapor phase epitaxy, we however will use the more general acronym MOCVD) and MBE (molecular beam epitaxy).<sup>3-5</sup> MOCVD not only fulfills present technological requirements in the field of thin films and superlattices but also shows considerable promise in such areas as atomic layer epitaxy (ALE), se-

lected area deposition, and metastable structures.<sup>6</sup> In addition, very sharp impurity profiles, extreme purity, and alloys with composition inside miscibility gaps with new physical properties, can be obtained by this technique. MOCVD is more attractive than MBE as far as the practical aspects are concerned (cost, operational time, optimization for large-scale production, etc.) and for certain materials systems, e.g., In- and P-containing alloys, has become the method of choice in commercial production of epilayers.<sup>7</sup> It is also interesting to note that protagonists of MBE are increasingly turning to deposition techniques that are hybrids of MOCVD (e.g., gas source MBE (GSMBE), metal organic MBE (MOMBE), and chemical beam epitaxy (CBE)). The MOCVD process is complex and involves both gas-phase and surface reactions (catalysis). It consists of several steps: (a) evaporation of reagents (precursors), (b) pyrolysis of precursors and reaction of decomposition fragments to give the desired material, and (c) elimination of side reactions and unwanted products (e.g., C). As an example, the homoepitaxial growth of GaAs from trimethylgallium ( $GaMe_3$ ) and arsine ( $AsH_3$ ) precursors in a stream of hydrogen at atmospheric pressure may be schematized by the following reaction:



(1) Tsang, W. T. *Semiconductors and Semimetals*; Lightwave Communications Technology, Part A; Material Growth Technologies; Academic Press: Orlando, 1985; Vol. 22.

(2) Ducaroir, M.; Bernardi, C.; Vandebulcke, L. Proceedings of the Seventh European Conference on Chemical Vapour Deposition, Perpignan 19-23 June 1989; Colloque C5, Supplement au Tome 50, May 1989.

(3) Kuech, T. F. *Mater. Sci. Rep.* 1987, 2, 1.

(4) Ludowise, M. J. *J. Appl. Phys.* 1985, 58, R31.

(5) Williams, J. O. *Angew Chem., Int. Ed. Engl. (Adv. Mater.)* 1989, 28, 1110.

(6) Orton, J. W. *Chemtronics* 1988, 3, 130.

(7) (a) Frijlink, P. M. *J. Cryst. Growth* 1988, 93, 207. (b) Razeghi, M. *The MOCVD Challenge*; Adam Hilger: Bristol, 1989; Vol. 1.

Therefore, in principle the precursors must be characterized by suitable volatility and by a pyrolytic decomposition mode leading to the formation of only one solid compound (e.g., GaAs). The other side products must be gaseous at the reaction temperature in order to be easily eliminated from the system. Thus far trimethyl and triethyl derivatives of Al, Ga, and In in combination with  $\text{AsH}_3$ ,  $\text{PH}_3$ , and  $\text{SbH}_3$  (or  $\text{SbMe}_3$ ) have been employed for the preparation of III-V semiconductor materials. Their use is, however, ambivalent. On one hand, they have allowed the development of MOCVD, while on the other their use causes problems that hamper the progress of this promising technique. In fact alkyl derivatives of group 13 elements are pyrophoric and sensitive to water and oxygen, and  $\text{PH}_3$  and  $\text{AsH}_3$  are extremely toxic gases. Consequently, drastic precautions aimed at eliminating fire hazards, contamination of materials by metal oxides, and chiefly removing the danger of poisoning must be taken, raising significantly the cost of the preparation facility. In this context the success of MOCVD is remarkable, and the fact remains that use of these precursors can impart high quality and novel properties to semiconductor materials. The chemistry of the MOCVD process has been largely neglected until recently but is now attracting increasing attention. It is universally recognized that the chemistry of gas-phase and surface processes plays a fundamental role in the overall epitaxy, and many advantages in material production will ensue from an improved knowledge of the pathways leading from volatile precursors to solid materials. The importance of and interest in the chemistry is witnessed by the great number of publications appearing in a growing number of journals (e.g., *Advanced Materials*, *Chemtronics*, *Chemistry of Materials*). The aim of this review, therefore, is to define the role of chemistry in growth by MOCVD and to identify and emphasize in this context the main lines of current research activity. There exist several excellent reviews<sup>1-6,7b,8,9</sup> on MOCVD covering general or particular topics, but none deals specifically with the relationship between chemical aspects on one hand and material properties on the other. Taking this into account we will discuss the following subjects: (a) the purity of precursors and material quality; (b) the reaction and growth mechanisms; (c) the use of new precursors; (d) the future perspectives, on the basis of data published recently and mainly referring to the literature since 1987.

### Purity of Precursors and Material Quality

The purity of III-V materials is of fundamental importance in controlling their optical and electrical properties that determine in turn their technological usefulness, i.e., the performance and reliability of devices. Even at low concentrations, ionized impurities degrade electron mobility by scattering<sup>10</sup> and provide nonradiative recombination pathways.<sup>11</sup> Therefore, great efforts have been expended on the problems connected with the presence of extraneous chemical species. It is accepted that the semiconductors normally used are not intrinsic materials,

**Table I. Common Impurities in MOVPE Organometallics and Hydrides**

| impurity              | origin                                  | mater | behavior   | ref      |
|-----------------------|-----------------------------------------|-------|------------|----------|
| $\text{CH}_3\text{I}$ | $\text{GaMe}_3$                         |       |            | 18       |
| S                     | $\text{GaMe}_3\text{-S}(\text{CH}_3)_2$ |       | donor      | 22       |
| Si                    | $\text{GaMe}_3\text{-AsMe}_3$           | GaAs  | amphoteric | 36       |
| Si                    | $\text{GaMe}_3$                         | GaAs  | donor      | 25b      |
| Be                    | $\text{GaMe}_3$                         | GaAs  | acceptor   | 25b      |
| Mg                    | $\text{GaMe}_3$                         | GaAs  | acceptor   | 25b      |
| Zn                    | $\text{GaMe}_3$                         | GaAs  | acceptor   | 25b, 17b |
| Si                    | $\text{GaEt}_3$                         | GaAs  | donor      | 28       |
| Zn                    | $\text{GaEt}_3$                         | GaAs  | acceptor   | 27       |
| Mg                    | $\text{GaEt}_3$                         | GaAs  | acceptor   | 27       |
| Si                    | $\text{GaEt}_3$                         | GaAs  | donor      | 27       |
| Si                    | $\text{InR}_3$                          | InP   | donor      | 30       |
| Zn                    | $\text{InR}_3$                          | InP   | acceptor   | 27       |
| $\text{O}_2$          | $\text{InMe}_3$                         |       |            | 20       |
| Zn                    | $\text{PhAsH}_2$                        | GaAs  |            | 15b      |
| Fe                    | $\text{PhAsH}_2$                        | GaAs  |            | 15b      |
| Mg                    | $\text{PhAsH}_2$                        | GaAs  |            | 15b      |
| Mn                    | $\text{PhAsH}_2$                        | GaAs  |            | 15b      |
| Ge                    | $\text{Et}_2\text{AsH}$                 | GaAs  | donor      | 24c      |
| S                     | $\text{Bu}^1\text{AsH}_2$               | GaAs  | donor      | 131      |
| Cu                    | substrate                               | GaAs  |            | 36       |
| Mn                    | substrate                               | GaAs  | donor      | 36       |

but they must be doped. That is, they must contain electrically active impurities (dopants) different from the main constituents of the compound or of the alloy. Thus, in principle, no difference exists between dopants and impurities normally found in epitaxial films, except that the nature and concentration of dopants are accurately controlled whereas the presence of impurities is not regulated. It is also recognized that the mechanism for incorporation of an element as dopant and/or impurity is analogous. The most common impurities (or dopants) in III-V materials are Zn, Mg, C, Be, Si, Ge, O, S, Sn, and Se, i.e., atoms belonging to groups 12, 14, or 16. These act as substitutional impurities<sup>11,12</sup> in that they occupy lattice sites normally occupied by group 13 atoms (Zn, Mg, or Be for Al, Ga, or In; p-type) or group 15 atoms (O, S, or Se for N, P, As, or Sb; n-type). C, Ge, Si, and Sn may show amphoteric behavior<sup>13</sup> in that they may occupy either group 13 atom and group 15 atom positions. However, C is generally found in group 13 positions (p-type), whereas Si is in group 15 positions (n-type). Technologically important intrinsic (pure) materials generally must have impurities at a level much lower than  $10^{15}$  atoms  $\text{cm}^{-3}$ . There have been recently reports of carrier concentration (n-type) as low as  $10^{13}$  atoms  $\text{cm}^{-3}$  and electron mobilities of 335 000  $\text{cm}^2 \text{V}^{-1} \text{s}^{-1}$  for GaAs homoepitaxial layers.<sup>14</sup> As solid materials contain about  $10^{22}$  atoms  $\text{cm}^{-3}$ , it means that pure materials must contain impurities at a level much less than 1 ppm. Therefore, it is generally accepted that the purity of the precursor alkyls and hydrides currently limits the obtainable purity of the epitaxial layers<sup>15</sup> and an understanding of the origin and of the behavior of residual impurities in the films is an essential issue in MOCVD. The incorporation rate of impurities from the vapor phase of precursors to the epitaxial layer ranges over wide values and depends on the particular system under investigation. Impurities can originate as contaminants of the precursor

(8) Very recently MOVPE conferences have been periodically organized. The *Journal of Crystal Growth* has published expansively the works presented, giving a comprehensive and up-to-date picture of this technique. See: (a) ICMOVPE-I Ajaccio, France 1981; *J. Cryst. Growth* 1981, 55. (b) IC-MOVPE-II Sheffield, England 1984; *J. Cryst. Growth* 1984, 68. (c) IC-MOVPE-II California, USA, 1986; *J. Cryst. Growth* 1986, 77. (d) IC-MOVPE-IV, Hakone, Japan 1988; *J. Cryst. Growth* 1988, 93.

(9) Cowley, A. H.; Jones, R. A. *Angew. Chem., Int. Ed. Engl.* 1989, 28, 1208.

(10) Fujita, S.; Uemoto, Y.; Araki, S.; Imaizumi, M.; Takeda, Y.; Sasaki, A. *Jpn. J. Appl. Phys.* 1988, 27, 1151.

(11) Smith, R. A. *Semiconductors*, 2nd ed.; Cambridge University Press: Cambridge, 1978; Chapter 3.

(12) Stringfellow, G. B. *J. Cryst. Growth* 1986, 75, 91.

(13) (a) Lideikis, T.; Treideris, G. *J. Cryst. Growth* 1989, 96, 790. (b) Kamp, M.; Contini, R.; Werner, K.; Heinecke, H.; Weyers, M.; Balk, P. *J. Cryst. Growth* 1989, 95, 154.

(14) Razeghi, M.; Omnes, F.; Nagle, J.; Defour, M.; Acher, O.; Bove, P. *Appl. Phys. Lett.* 1989, 55, 1677.

(15) (a) Polgar, G.; Stall, R. A.; Schumacher, N. E. *Solid State Technol.* 1987, 2, 109. (b) Hoare, R. D.; Khan, O. F. Z.; Parrot, M. J.; Williams, J. O.; Frigo, D. M.; Bradley, D. C.; Chudzynska, H.; Jakobs, P.; Jones, A. C.; Rushworth, S. A. *Programme and Abstracts of 3rd European Workshop on MOVPE, Montpellier-France 5-7 June, 1989*; p 92.

source or come from leaks in the reactor ( $O_2$ ,  $H_2O$ ) and are incorporated into the material during the growth process (Table I). Alternatively carbon, the prevalent impurity in MOCVD, is a component of the precursor molecule and enters into the material following parasitic side reactions.<sup>16</sup> From the practical point of view, MOCVD precursors must satisfy the conditions of extreme purity and ideally should not lead to the incorporation of C into epilayers. Special and very sensitive analytical methods are used to detect impurity elements in organometallic precursors. ICP (inductively coupled plasma)<sup>17</sup> spectroscopy has been widely used and has proven to be the most powerful tool in detecting even small traces (<1 ppm) of the impurities present in organometallic and hydride sources. Detection using emission lines in the UV region improves sensitivity even further. Mass spectrometry has found variable success in identifying impurities consisting of light hydrocarbons<sup>18,19</sup> or oxygen<sup>20</sup> (in this case the monitored species were methoxide derivatives formed by insertion of  $O_2$  into the M-C bond<sup>21</sup>). Sulfur present in  $Me_3Ga$  and  $Me_3Al$  has been determined by a luminescence method<sup>22</sup> (detection limit of S is ca. 0.001  $\mu g/cm^3$ ). However, the most effective method of monitoring impurity problems is by relating the nature and purity of precursors and the growth conditions with the chemical purity and electrical properties of the obtained epitaxial materials and performance of the devices.<sup>12,16</sup> Although rather empirical, this criterion has become of general applicability and is quite effective in giving useful information on the behavior of both precursors and impurities introduced during the growth process. To assess the purity as a function of depth in the epilayer, dynamic SIMS (secondary ion mass spectroscopy) methods have been developed.<sup>16,23</sup> Isotope tracer techniques<sup>24</sup> have assisted in the identification of particular impurities. Low-temperature photoluminescence (PL) spectroscopy<sup>10,16,25</sup> can in certain cases assist in the identification of donor and acceptor impurities on the basis of the band shape and the energy of spectral features. Hall effect measurements yield values of the net carrier concentration and the carrier mobility at both liquid nitrogen and room temperature. In the most favorable cases it is possible to determine  $N_D$  (number of donors  $cm^{-3}$ ),  $N_A$  (number of acceptors  $cm^{-3}$ ), the identification of electrically active impurities, and their incorporation as a function of growth parameters. In Table I we summarize some of the most common impurities present in the commonly used MOCVD precursors and III-V materials.

(16) Kuech, T. F.; Wolford, D. S.; Veuhoff, E.; Deline, V.; Mooney, P. M.; Potemski, R.; Bradley, J. *J. Appl. Phys.* 1987, 62, 632.

(17) (a) Jones, A. C. *Chemtronics* 1989, 4, 15. (b) Jones, A. C.; Wales, G.; Wright, P. J.; Oliver, P. E. *Chemtronics* 1987, 2, 83.

(18) Davies, J. J.; Goodfellow, R. C.; Williams, J. O. *J. Cryst. Growth* 1984, 68, 10.

(19) Baugh, P. J.; Casson, A.; Jones, M. W.; Jones, A. C. *Chemtronics* 1987, 2, 93.

(20) Reier, F. W.; Nickel, S.; Schumann, H. *J. Cryst. Growth* 1988, 92, 335.

(21) Terao, H.; Sunakawa, H. *J. Cryst. Growth* 1984, 68, 157.

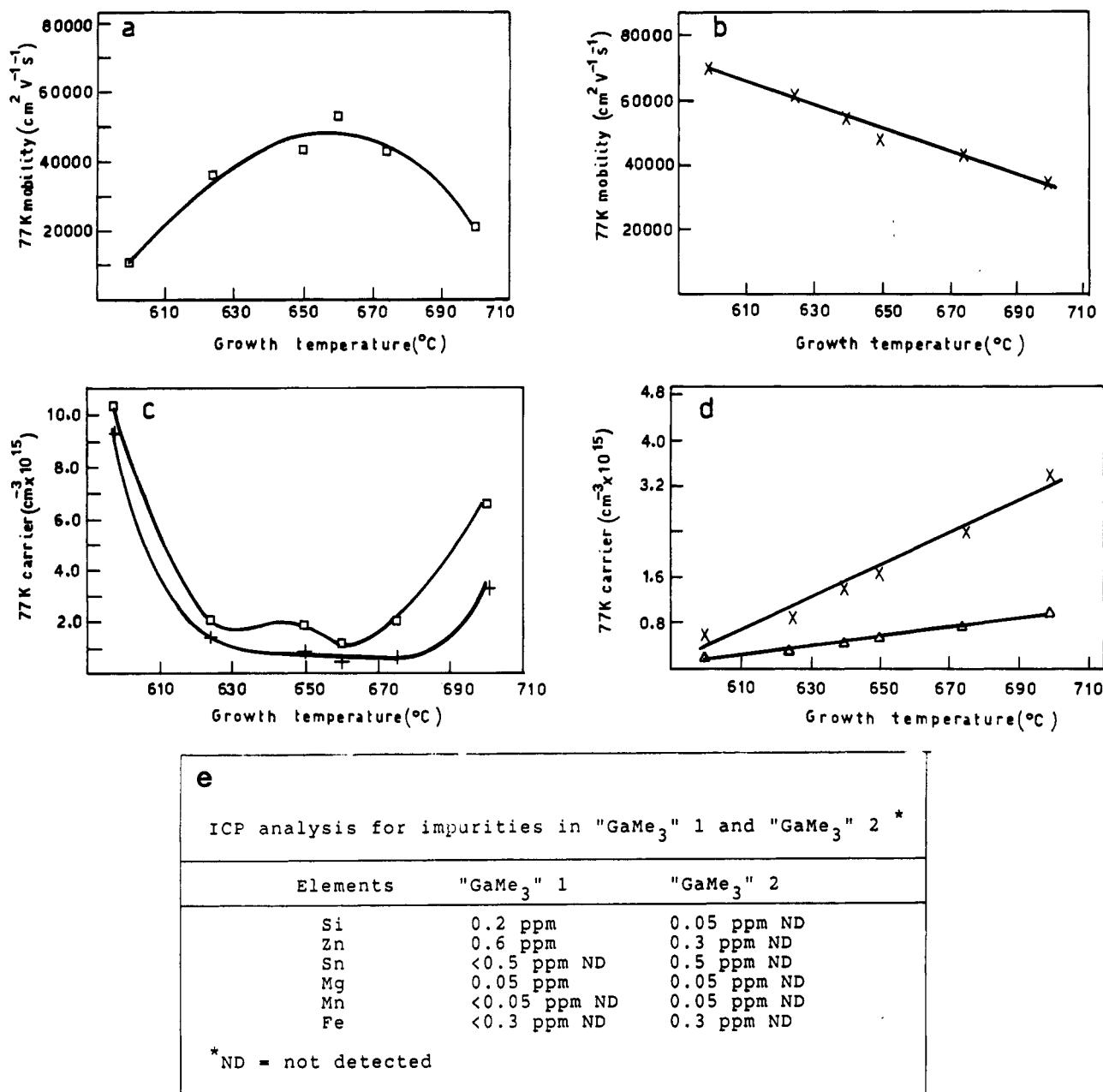
(22) Sharavadze, E. V.; Grinberg, E. E.; Fakieva, O. A.; Efremov, A. A.; Vasil'eva, L. V. *High Purity Subst. (Engl. Transl.)* 1988, 1, 163.

(23) (a) Kuech, T. F.; Scilla, G. J.; Cardone, F. *J. Cryst. Growth* 1988, 93, 550. (b) Wang, P. J.; Kuech, T. F.; Tischler, M. A.; Mooney, P. M.; Scilla, G. J.; Cardone, F. *J. Cryst. Growth* 1988, 93, 569. (c) Enquist, P. M. *J. Cryst. Growth* 1988, 93, 637.

(24) (a) Lum, R. M.; Klingert, J. K.; Kisker, D. W.; Abys, S. M.; Stevie, F. A. *J. Cryst. Growth* 1988, 93, 120. (b) Lum, R. M.; Klingert, J. K.; Kisker, D. W.; Tennant, D. M.; Morris, M. D.; Malm, D. L.; Kowalchick, J.; Heimbrook, L. A. *J. Electron. Mater.* 1988, 17, 101. (c) Lum, R. M.; Klingert, J. K.; Lamont, M. G. *J. Cryst. Growth* 1988, 93, 137.

(25) (a) Shealy, J. R.; Schaus, C. F.; Eastman, L. F. *J. Cryst. Growth* 1984, 68, 305. (b) Hunt, N.; Williams, J. O. *Chemtronics* 1987, 2, 165. (c) Takeda, Y.; Araki, S.; Noda, S.; Sasaki, A. *Jpn. J. Appl. Phys.* 1990, 29, 11.

**GaAs Quality.** Systematic studies of GaAs growth have been carried out starting from different purity  $GeMe_3$  and  $AsH_3$  sources and varying the  $[AsH_3]/[GaMe_3]$  ratio and growth temperature ( $T_G$ ).<sup>25b</sup> Zn and Si originally present as volatile impurities in the precursors (see Figure 1) and C were found in the GaAs layer. Zn behaved as a p-dopant, and its content decreased with increasing temperature, while Si showed n-type behavior, and its content in the epilayer increased with increasing temperature at constant  $[AsH_3]/[GaMe_3]$  ratio. As expected on the basis of previously reported data,<sup>26</sup> C decreased with increasing  $[AsH_3]/[GaMe_3]$  ratio. The GaAs material with the best electrical properties was grown from the purest precursor sources. In such a way it was possible to establish the optimal growth parameters as shown in Figure 1.

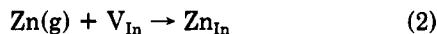

GaAs growth has also been investigated by using  $GeEt_3$  instead of  $GeMe_3$  in a reduced pressure range (18–78 Torr).<sup>27</sup> The dependence of electron mobility and carrier concentration on  $[AsH_3]/[GeEt_3]$  ratio was different from the growth using  $GeMe_3$ ; in fact all materials were n-type, and no variation with  $[AsH_3]/[GeEt_3]$  ratio was found at  $T_G = 650$  °C, while at 600 °C the mobility decreased with increasing V/III ratio, a behavior opposite to that found with  $GeMe_3$  and indicating a low level of acceptor impurities due to the presence of Zn or Mg instead of C. As in ref 25b, Zn content increased with decreasing temperature and increasing  $[AsH_3]/[GeEt_3]$  ratio. The impurity responsible for n-type behavior was supposed to be Si, probably coming from  $Et_3SiH$  present as a contaminant of the metal source precursor. Si incorporation increased with  $T_G$ , presumably due to the high activation energy for the decomposition of the  $Et_3SiH$  molecule.<sup>27</sup> On the other hand, Si incorporation decreased with a decrease in the total reactor pressure, and this was explained in terms of Si incorporation being directly dependent on  $Et_3SiH$  partial pressure in the gas phase. It was, therefore, concluded that purer GaAs could be obtained by decreasing the reactor pressure. Growth at still lower pressure<sup>28</sup> (0.1–20 Torr compared to 18–78 Torr of ref 27) showed that this prediction did not hold below 10 Torr. In fact the GaAs grown had electrical properties much more independent of the  $[AsH_3]/[GeEt_3]$  ratio, and Si was identified as the n-type impurity. Electron mobility on one hand and both  $N_D$  and  $N_A$  on the other hand showed a maximum and a minimum, respectively, around 2–5 Torr. This fact and a significant content of intrinsic C resulted from a change in growth mechanism at low pressure.

**$Al_xGa_{1-x}As$  Purity.** Recent experiments in the growth of  $Al_xGa_{1-x}As$  have been centered on the role of  $O_2$  or  $H_2O$  coming from leaks in the growth system.<sup>16</sup> This effect is ascribed to the presence of Al, which shows a larger oxophilicity than gallium and indium and readily forms Al oxides which can be incorporated as impurities. The stability of metal oxides increases with decreasing temperature, and in the presence of Al at 700 °C  $O_2$  or  $H_2O$  should be present at levels lower than fractions of ppb in order to avoid the formation of Al oxides. These conditions are much less stringent for Ga. As it is to be expected that the possibility of system leakage increases with the use of low-pressure reactors, operating at low pressures seems not suitable for growth of high-purity  $Al_xGa_{1-x}As$ . In any case it has been found that the best  $Al_xGa_{1-x}As$  corresponds to the highest  $x$  because the greater concentration of  $AlMe_3$

(26) Kuech, T. F.; Veuhoff, E.; Kuan, T. S.; Deline, V.; Potemski, R. *J. Cryst. Growth* 1986, 77, 257.

(27) Kuech, T. F.; Potemski, R. *Appl. Phys. Lett.* 1985, 47, 821.

(28) Kimura, K.; Takagishi, S.; Horiguchi, S.; Kamon, K.; Mihara, M.; Ishii, M. *Jpn. J. Appl. Phys.* 1986, 25, 1393.

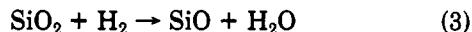



**Figure 1.** Electron mobility and donor/acceptor concentrations versus growth temperature at 77 K for GaAs epitaxial layer grown from two different purity GaMe<sub>3</sub> sources ("GaMe<sub>3</sub>" 1 and "GaMe<sub>3</sub>" 2) with AsH<sub>3</sub> at V/III ratio of 75/1: a,  $\mu_{77}$  for "GaMe<sub>3</sub>" 1; b,  $\mu_{77}$  for "GaMe<sub>3</sub>" 2; c, N<sub>D</sub> (□) and N<sub>A</sub> (+) for "GaMe<sub>3</sub>" 1; d, N<sub>D</sub> (x) and N<sub>A</sub> (Δ) for "GaMe<sub>3</sub>" 2; e, ICP analysis for the two sources (after Hunt and Williams,<sup>28b</sup> reproduced with the kind permission of Butterworths Scientific).

required was more effective in destroying both O<sub>2</sub> and H<sub>2</sub>O. The dependence of Al<sub>x</sub>Ga<sub>1-x</sub>As quality on the purity of AlMe<sub>3</sub>, GaMe<sub>3</sub>, and AsH<sub>3</sub> has been studied by varying the purity of precursor sources.<sup>29</sup> The quality of the Al<sub>x</sub>Ga<sub>1-x</sub>As layers was more strongly affected by the O<sub>2</sub> content of AsH<sub>3</sub> than from the presence of O<sub>2</sub> in AlMe<sub>3</sub>, where it probably forms AlMe<sub>2</sub>(OMe).<sup>21</sup>

**Purity of In-Based Materials.** The behavior of impurities in the preparation of InP and related materials has been investigated by procedures similar to those reported for GaAs. The quality of InP grown with InMe<sub>3</sub> and PH<sub>3</sub> on varying both [PH<sub>3</sub>]/[InMe<sub>3</sub>] ratio and growth temperature has been studied as a function of the source purity. The best materials have been obtained from purest precursors, and the main impurities identified in InMe<sub>3</sub>

have been Zn (acceptor) and Si (donor).<sup>30</sup> Zn contamination has been rationalized by taking into account the tendency of Zn to occupy the In vacant sites (V<sub>In</sub>):




(where Zn(g) indicates Zn present in the vapor phase probably in the form of ZnR<sub>2</sub>, while Zn<sub>In</sub> indicates a Zn atom occupying In sites in the crystal). [Zn<sub>In</sub>] increases with decreasing temperature, and this was explained by taking into account Zn desorption increasing with temperature (Zn vapor pressure is 11 Torr at 600 °C and 260 Torr at 800 °C).<sup>3</sup> On the other hand, high [PH<sub>3</sub>]/[InMe<sub>3</sub>] ratio was found to favour V<sub>In</sub> and consequently increases the Zn incorporation. On the contrary, Si incorporation

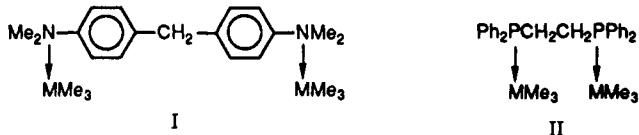
(29) Hata, M.; Fukuhara, N.; Zempo, Y.; Isimura, M.; Yako, T.; Maeda, T. *J. Cryst. Growth* 1988, 93, 543.

(30) Gerrard, N.; Nicholas, D. J.; Williams, J. O.; Jones, A. C. *Chemtronics* 1988, 3, 17.

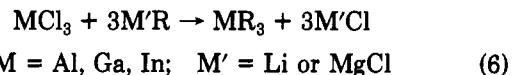
increases with increasing temperature in line with the higher decomposition temperature of Si organic impurity sources and the low Si vapor pressure<sup>3</sup> (<10<sup>-11</sup> Torr at 600 °C and 10<sup>-11</sup> Torr at 800 °C). Similar growth experiments also with a InMe<sub>3</sub> sample prepared<sup>31</sup> by a new method (no details reported on the synthesis) gave similar results. In fact SIMS and PL measurements showed Zn decreasing and Si increasing with growth temperature; it was observed that this behavior parallels that of the hole concentration in GaAs or InP intentionally doped by using ZnMe<sub>2</sub> or ZnEt<sub>2</sub> or that of electron concentration in GaAs and InP intentionally Si-doped with silane. Also in this case the best quality InP was grown by using the purest InMe<sub>3</sub> source. Si in InP can also derive from SiO<sub>2</sub> from a heated silica boat transported as the volatile species SiO, as suggested by Briggs and Butler,<sup>32</sup> through the reactions



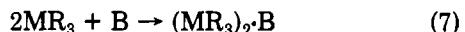
Similar reactions may be also responsible for Si interface contamination during homoepitaxial GaAs growth, where Si "spikes" are observed in dynamic SIMS profiles.<sup>33</sup> However, such Si "spikes" may be explained by Si contamination from the precursors during precleaning and/or pauses in the growth process. The purity of In<sub>x</sub>Ga<sub>1-x</sub>As has been studied on varying [AsH<sub>3</sub>]/[InMe<sub>3</sub>] + [GaMe<sub>3</sub>]<sup>34</sup> ratios in the range 20–500 °C. Only n-doped layers were obtained, and the residual carrier concentration increased linearly with  $T_G$ ; both acceptor and donor impurities increased with the V/III ratio; the main acceptor PL peak was due to Zn, while the identity of donor was not clear even though Si, Ge, or even C were suggested. Thus the behavior of C seems quite unusual here, not only for its donor character but also because its content increases with V/III ratio.


**Impurities from Substrate.** Substrate preparation is very important for the growth of pure materials<sup>33,35</sup> in that extrinsic impurities can be incorporated by diffusion from the substrate itself. This is the case for Mn and Cu studied by combined SIMS and PL experiments,<sup>36</sup> and it has been shown that these elements occupy Ga sites in GaAs (i.e., they act as acceptors). Moreover, as the diffusion rate is temperature dependent, the luminescence intensity of the Cu peaks increased with growth temperature. Cr, Fe, and Mg as contaminants were also found after surface preparation.<sup>35</sup>

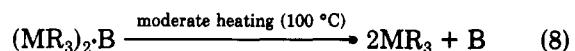
**Purity of Precursors.** The general observation that the best-quality material corresponded to the highest purity of precursors has stimulated efforts aimed at finding very efficient purification methods and clean preparative routes.<sup>37</sup> In addition to the classical purification procedures of sublimation and distillation,<sup>38</sup> precursors have also been purified by the so-called adduct route.<sup>39</sup> It is


well-known that alkyl compounds of trivalent metals M = Al, Ga, and In are electronically unsaturated (only six electrons are formally in the outer shell). Therefore, they show a pronounced Lewis acid behavior. This is reflected in the general tendency of these organometals (a) to occur as oligomeric forms through electron-deficient bonds in which C in the  $\alpha$ -position bridges two M atoms sharing its electron pair with them (for Al this takes place also in vapor phase) and (b) to form complexes with Lewis bases. The complex formation can be schematized as follows:<sup>39a</sup>




in which  $x$  molecules of the R<sub>3</sub>M organometallic compound form  $x$  coordinative bonds with the Lewis basis B (in B,  $x$  atoms with a lone electron pair available for coordinative bonding are present). The reaction represents a particular case in which MR<sub>3</sub>(g) is a volatile compound forming a low volatility  $[(\text{MR}_3)_x \cdot \text{B}](\text{s})$  complex with the involatile Lewis base B(s). As in general the coordination bond strength is lower than in the covalent bond of the complex molecules, the complex may dissociate at moderately low temperatures (100 °C), releasing the organometallic MR<sub>3</sub> molecule as vapor. The most useful ligands have been proven to be 4,4'-methylenebis(*N,N'*-dimethylaniline) (I) and 1,2-bis(diphenylphosphino)ethane (diphos, II), which




form 1:2 complexes with MMMe<sub>3</sub> compounds. The efficient purification of MMMe<sub>3</sub> organometallics has been carried out stepwise through the following sequence:<sup>30</sup> (a) Synthesis of MR<sub>3</sub>:



(b) Formation of Lewis complex:



(c) Thermal dissociation:



Halide impurities (SiCl<sub>4</sub>, SnCl<sub>4</sub>, ZnCl<sub>2</sub>, RX, X = Cl, Br, I) contained in MCl<sub>3</sub> and in M'R are transformed (step a) into SiR<sub>4</sub>, SnR<sub>4</sub>, and ZnR<sub>2</sub>, and hydrocarbons are separated in step b since they do not complex with B. Finally very pure MR<sub>3</sub> can be obtained by thermal dissociation of the adduct (MR<sub>3</sub>)<sub>2</sub>·B and subsequent condensation (step c). The efficiency of this method has been demonstrated by ICP analysis before and after adduct formation<sup>17</sup> and by a comparison of the PL spectra and carrier mobility of materials obtained from adduct purified and nonpurified precursors.<sup>30</sup> Other sources of impurity may be O<sub>2</sub> and H<sub>2</sub>O present in AsH<sub>3</sub> and PH<sub>3</sub> or coming from leaks in the reactor lines;<sup>40</sup> these impurities are eliminated by bubbling

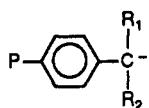
(31) Aina, O.; Mattingly, M.; Steinhauer, S.; Mariella, R.; Melas, A. *J. Cryst. Growth* 1988, 92, 215.

(32) Briggs, A. T. R.; Butler, B. R. *J. Cryst. Growth* 1987, 85, 535.

(33) Hunt, W.; Henderson, D. K.; Williams, J. O. *Chemtronics* 1988, 3, 86.

(34) Kamada, M.; Ishikawa, H. *J. Cryst. Growth* 1989, 94, 849.

(35) (a) Brown, A.; Hunt, W.; Patterson, A. M.; Vickerman, J. C.; Williams, J. O. *Chemtronics* 1986, 1, 11. (b) Dennington, N. R.; Williams, J. O. Programme and Abstracts of 3rd European Workshop on MOVPE, Montpellier-France, 5–7 June 1989; p. 106.


(36) Blaauw, C.; Miner, C.; Emmerstorfer, B.; SpringThorpe, A. J.; Gallant, M. *Can. J. Phys.* 1985, 63, 664.

(37) Reier, F. W.; Wolfram, P.; Schumann, H. *J. Cryst. Growth* 1988, 93, 41.

(38) Olson, J. M.; Kurtz, S. R.; Kibbler, A. E. *J. Cryst. Growth* 1988, 89, 131.

(39) (a) Bradley, D. C.; Chudzynska, H.; Faktor, M. M.; Frigo, D. M.; Hursthouse, M. B.; Hussain, B.; Smith, L. M. *Polyhedron* 1988, 7, 1289. (b) Bradley, D. C.; Faktor, M. M.; Frigo, D. M.; Zheng, D. H. *Chemtronics* 1988, 3, 53. (c) Bradley, D. C.; Chudzynska, H.; Frigo, D. M. *Chemtronics* 1988, 3, 159. (d) Bradley, D. C.; Faktor, M. M.; Frigo, D. M.; Harding, I. S. *Chemtronics* 1988, 3, 235. (e) Foster, D. F.; Rushworth, S. A.; Cole-Hamilton, D. J.; Jones, A. C.; Stagg, J. P. *Chemtronics* 1988, 3, 38. (f) Wolfram, P.; Reier, F. W.; Franke, D.; Schumann, H. *J. Cryst. Growth* 1989, 96, 691. (g) Laube, G.; Kohler, U.; Weidlein, J.; Scholz, F.; Streubel, K.; Dieter, R. J.; Karl, K.; Gerdon, M. *J. Cryst. Growth* 1988, 93, 45. (40) Flaherty, E.; Herold, C.; Wojciak, J.; Murray, D.; Amato, A.; Thomson, S. *Solid State Technol.* 1987, 7, 69.

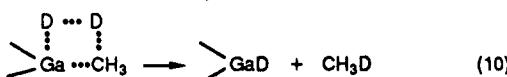
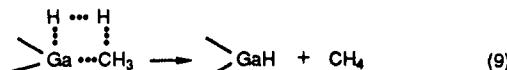
the gases through liquid Al-Ga-In alloy or by using very efficient polymeric resins<sup>41</sup> containing reactive sites of carbanions that remove both H<sub>2</sub>O and O<sub>2</sub> (III, where P represents a polymeric chain).




### MOCVD Reaction Mechanisms

The knowledge of the chemical reactions involved in the epitaxial growth of III-V materials is of vital importance in that it can provide suitable solutions to some critical problems of MOCVD (parasitic reactions, impurities, safety, etc.). The present availability of information of a fundamental nature is inadequate to explain the bulk of the empirical data. Therefore, great efforts have been recently devoted to investigations aimed at unravelling the chemical nature of the growth process. Difficulties arise mainly from two inherent peculiarities of the MOCVD process: (a) the pyrolysis of both organometallic and hydride sources and reactions between the products can occur both in the gas (homogeneous processes) and at the surface of the reactor walls or substrate surfaces (heterogeneous processes); (b) the chemical species involved are very unstable (radicals, organometallic species with the metal at a formal valence 2, 1, or 0) and present at concentrations that vary depending on the position in the reactor (e.g., near or far from the heated substrate). Accordingly, qualitative and especially quantitative analysis of the reagent species are difficult and can give conflicting results depending upon the experimental techniques employed for sampling the gas mixture and precise conditions employed during the growth process. In situ analysis employing a nonintrusive probe is clearly preferable, but also ex situ experiments are currently proving useful.<sup>42</sup> Suitably modified instrumental techniques such as UV and IR spectroscopies,<sup>43</sup> CARS<sup>44</sup> (coherent anti-Stokes Raman spectroscopy), mass spectrometry,<sup>45</sup> and gas chromatography with proper reactor modifications are under investigation. In addition to the identification of species involved in MOCVD, reference to the extended body of data relating growth rate to other parameters can yield important complementary information about mechanisms. Recent activity has been focused on the following topics: pyrolysis of organometallic precursors, their interaction with hydrides and carrier gas, and pressure effects; carbon incorporation using different precursors; growth rate, etc.

Decomposition of the organometallic and hydride precursors PH<sub>3</sub> and AsH<sub>3</sub>, GaMe<sub>3</sub>, GaEt<sub>3</sub>, InMe<sub>3</sub>, and AlMe<sub>3</sub> have been studied in connection with the preparation of epitaxial GaAs, InP, and AlGaAs.



**GaR<sub>3</sub> Decomposition Studies.** GaMe<sub>3</sub> decomposition on a GaAs substrate has been studied under three different



**Figure 2.** Decomposition temperature profiles for GaMe<sub>3</sub> in dihydrogen (○), with AsH<sub>3</sub> (□) at a V/III ratio of 50/1 and for AsH<sub>3</sub> alone in dihydrogen (×) (after Williams et al.,<sup>46</sup> reproduced with the kind permission of Plenum Press).

conditions (Figure 2): (a) alone or in inert ambient with N<sub>2</sub>,<sup>47</sup> and He<sup>46,48</sup> carrier gases; (b) in H<sub>2</sub> or D<sub>2</sub>,<sup>45,48,49</sup> ambient; (c) in MOCVD ambient (i.e., in the presence of AsH<sub>3</sub> and H<sub>2</sub>).<sup>45,46,48,49</sup> The *T*<sub>50</sub> value (temperature at which the compound is 50% decomposed) of 550 °C has been found (in MOMBE, alone GaMe<sub>3</sub> decomposes in the range 380–680 °C<sup>50</sup>). In case b *T*<sub>50</sub> occurs at 450–500 °C, significantly lower temperatures as compared to case a.

Such data seem to indicate the participation of the carrier gas in the decomposition of GaMe<sub>3</sub>, i.e., in assisting the rate-determining step in scission of the metal–carbon bond (eqs 9 and 10).



The different *T*<sub>50</sub> values between ref 47 (*T*<sub>50</sub> = 550 °C) and ref 48 (*T*<sub>50</sub> = 480 °C) both obtained in inert ambient (N<sub>2</sub> and He, respectively) may be justified either by the possibility "that the actual temperature at the sampling point could be less than the measured furnace temperature which would lead to an inflated pyrolysis temperature"<sup>48</sup> or by the difference in the operating pressure of the reactor.<sup>49</sup> Moreover, it has been observed that GaMe<sub>3</sub> decomposition is mainly homogeneous in the presence of the GaAs surface because its rate is enhanced only slightly by increasing the GaAs surface area.<sup>46</sup> In N<sub>2</sub> or He ambient CH<sub>4</sub> is the predominant decomposition product with little C<sub>2</sub>H<sub>6</sub>, whereas in H<sub>2</sub> and D<sub>2</sub> the main product is still CH<sub>4</sub> (or CH<sub>3</sub>D), with C<sub>2</sub>H<sub>6</sub> less than found in N<sub>2</sub> or He.<sup>45,46,48,50</sup> On the basis of the above data the thermal decomposition of GaMe<sub>3</sub> may be considered to take place homogeneously involving free radicals (although contribution from heterogeneous reactions cannot be ruled out) and the gaseous products can be accounted for by the reaction sequence in eqs 11–15.

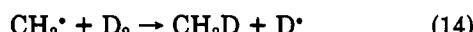
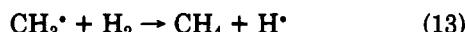
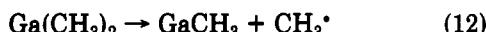
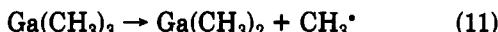
(41) Hardwick, S. J.; Lorenz, R. G.; Weber, D. K. *Solid State Technol.* 1988, 10, 93.

(42) (a) Williams, J. O.; Scott, M. D. In *Mechanism of Reactions of Organometallic Compounds with Surfaces*; Cole-Hamilton, D. J.; Williams, J. O., Eds.; *NATO ASI Ser.; Ser. B: Phys.* 1989, 198, 113. (b) Williams, J. O.; Hoare, R. D.; Khan, O.; Parrott, M. J. *Philos. Trans. R. Soc. London* 1990, A330, 183.

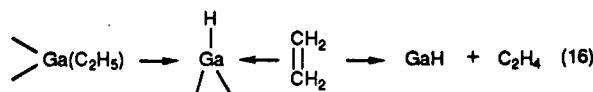
(43) Mc Crary, V. R.; Donnelly, V. M. *J. Cryst. Growth* 1987, 84, 253.

(44) (a) Fischer, M.; Luckerath, R.; Balk, P.; Richter, W. *Chemtronics* 1988, 3, 156. (b) Luckerath, R.; Richter, W.; Jensen, K. F. In *Mechanism of Reactions of Organometallic Compounds with Surfaces*; Cole-Hamilton, D. J., Williams, J. O., Eds.; *NATO ASI Ser.; Ser. B Phys.* 1989, 198, 157.

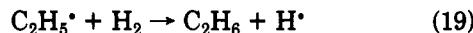
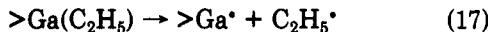
(45) Larsen, C. A.; Buchan, N. I.; Stringfellow, G. B. *Appl. Phys. Lett.* 1988, 52, 480.





(46) Williams, J. O.; Hoare, R.; Hunt, N.; Parrott, M. J. In *Mechanism of Reactions of Organometallic Compounds with Surfaces*; Cole-Hamilton, D. J., Williams, J. O., Eds.; *NATO ASI Ser.; Ser. B Phys.* 1989, 198, 131.

(47) Yoshida, M.; Watanabe, H.; Uesugi, F. *J. Electrochem. Soc.* 1985, 132, 677.


(48) Lee, P. W.; Omstead, T. R.; Mc Kenna, D. R.; Jensen, K. F. *J. Cryst. Growth* 1987, 85, 165.

(49) Stringfellow, G. B. In *Mechanism of Reactions of Organometallic Compounds with Surfaces*; Cole-Hamilton, D. J., Williams, J. O., Eds.; *NATO ASI Ser.; Ser. B Phys.* 1989, 198, 117.



(50) Putz, N.; Heinecke, H.; Heyen, M.; Balk, P.; Weyers, M.; Luth, H. *J. Cryst. Growth* 1986, 74, 292.



GaMe<sub>3</sub> decomposition also results in Ga-containing solid products, but the mode of their formation is still<sup>45,48</sup> unclear. Thermal decomposition<sup>46,48</sup> of GaEt<sub>3</sub> in H<sub>2</sub> and He (unfortunately D<sub>2</sub> was not investigated) yields C<sub>2</sub>H<sub>4</sub> as the main gaseous product accompanied by C<sub>4</sub>H<sub>10</sub> and C<sub>2</sub>H<sub>6</sub> (C<sub>2</sub>H<sub>6</sub> yield is higher in H<sub>2</sub> than in He). No difference in  $T_{50}$  (ca. 420 °C)<sup>48</sup> was observed between H<sub>2</sub> and He ambients. While contribution of heterogeneous reactions again cannot be excluded, the following decomposition pathways have been proposed for explaining the observed gaseous products:



or



Again in this case the formation of solid products containing Ga remained unexplored. Here the  $\beta$ -elimination reaction<sup>17</sup> seems to predominate, and the obvious absence of reaction<sup>19</sup> in He ambient explains the higher concentration of C<sub>2</sub>H<sub>6</sub> in H<sub>2</sub>, although the contribution of the radical disproportionation (eq 20) may take place.



The decomposition of GaMe<sub>3</sub> changes dramatically in the presence of AsH<sub>3</sub> (case c), in that

(1) The  $T_{50}$  is depressed both for GaMe<sub>3</sub> (from 480 to 360 °C<sup>45</sup>) and for AsH<sub>3</sub> (from 476 to 387 °C in D<sub>2</sub> ambient on GaAs surface) with the ratio [AsH<sub>3</sub>]/[GaMe<sub>3</sub>] = 1/2. A possible explanation is that one GaMe<sub>3</sub> molecule and one AsH<sub>3</sub> molecule form a Lewis acid-base complex probably in the gas phase, which subsequently eliminates CH<sub>4</sub> molecules.<sup>51</sup> Whether this reaction is homogeneous or heterogeneous depends on the temperature;<sup>45</sup> at the reported temperature (400–500 °C) it may occur heterogeneously, but under growth conditions ( $T_G > 600$  °C) a homogeneous contribution may predominate.<sup>45</sup> The involvement of an adduct originally suggested on the basis of IR evidence<sup>52</sup> has found further experimental support.<sup>53</sup>

(2) The major product, even in D<sub>2</sub> ambient, is CH<sub>4</sub>, while CH<sub>3</sub>D and (CH<sub>3</sub>)<sub>x</sub>AsH<sub>3-x</sub> are present only in traces.

(3) The presence of solid GaAs influences significantly the interaction between GaMe<sub>3</sub> and AsH<sub>3</sub>. GaEt<sub>3</sub> decomposition in the presence of AsH<sub>3</sub> shows evidence of an increasing ethane/ethene ratio in the products.<sup>46</sup>

On the question of the role of carrier gas, a result of fundamental importance has been reported by Gaskill et

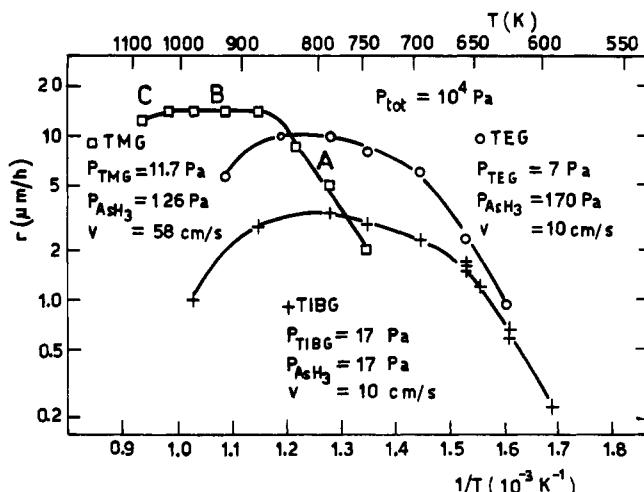
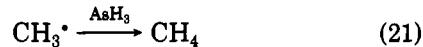




Figure 3. Temperature dependence of growth rate for homoepitaxial GaAs grown using GaMe<sub>3</sub> (TMG), GaEt<sub>3</sub> (TEG), and GaBu<sub>3</sub> (TIBG) and AsH<sub>3</sub> (after Balk and Brauer,<sup>50</sup> reproduced with the kind permission of Plenum Press).

al.<sup>54</sup> Through IR diode laser experiments they found that CH<sub>3</sub> radicals decay by reaction with AsH<sub>3</sub>, even in presence of H<sub>2</sub>:



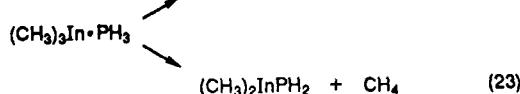
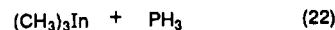
which is by far predominant over other possible reactions such as 2CH<sub>3</sub>· → C<sub>2</sub>H<sub>6</sub> and CH<sub>3</sub>· + H<sub>2</sub> → CH<sub>4</sub> + H·; these can take place only in the absence of AsH<sub>3</sub>. This is consistent with the fact that arsine acts as an extremely efficient hydrogen donor to alkyl radicals.<sup>42b</sup> This explains the formation of CH<sub>4</sub> as a single product in GaAs growth from GaMe<sub>3</sub> and an increase of C<sub>2</sub>H<sub>6</sub> over C<sub>2</sub>H<sub>4</sub> with GaEt<sub>3</sub> and AsH<sub>3</sub>.<sup>46</sup> Therefore, even though carrier gases (H<sub>2</sub> and D<sub>2</sub>) participate in the thermal decomposition of organometallic compounds alone, their role is extremely reduced under MOCVD conditions, and the material properties are little affected by the nature of the carrier gas.<sup>53</sup> Many experiments using the precursor series GaMe<sub>3</sub>, GaEt<sub>3</sub>, and GaBu<sub>3</sub><sup>55</sup> have been systematically carried out and surveyed with the aim of relating growth rate of GaAs to several factors such as precursor volatility, diffusion coefficient, and thermal stability. Substantial differences, indicating different growth mechanisms, are observed in the behavior of GaMe<sub>3</sub> on one hand and GaEt<sub>3</sub> and GaBu<sub>3</sub> on the other, although evidence of direct interaction with AsH<sub>3</sub> has been found for all organogallium compounds. Figure 3 shows growth rate versus temperature dependences under reduced total gas pressure (10<sup>4</sup> Pa) using the three different Ga precursors.

Similar dependences are observed at atmospheric pressure with GaMe<sub>3</sub>. The growth rate versus  $T$  shows the typical trend<sup>56</sup> characterized by the three regions A–C. The growth rate increases with increasing temperature until about 600 °C (region A), where it is postulated to depend on the kinetics of the deposition process; it is essentially temperature independent in the range 600–750 °C (region B), where it is diffusion limited, and finally decreases with increasing temperature above 750 °C (region C), probably due to depletion effects or to an enhanced desorption of an organogallium species from the

(51) Piocos, E. A.; Ault, B. S. *J. Am. Chem. Soc.* 1989, 111, 8978.

(52) Nishizawa, J.; Kurabayashi, T. *J. Electrochem. Soc.* 1983, 130, 413.

(53) Arens, G.; Heinecke, H.; Putz, N.; Luth, H.; Balk, P. *J. Cryst. Growth* 1986, 76, 305.



(54) Gaskill, D. K.; Kolubayev, V.; Bottka, N.; Simon, R. S.; Butler, J. E. *J. Cryst. Growth* 1988, 93, 127.

(55) Plass, C.; Heinecke, H.; Kayser, O.; Luth, H.; Balk, P. *J. Cryst. Growth* 1988, 88, 455.

(56) Reep, D. H.; Gandhi, S. K. *J. Electrochem. Soc.* 1983, 130, 675.

surface. With  $\text{GaEt}_3$  and  $\text{GaBu}_3^+$  the region where the rate is determined by decomposition of the precursors is shifted toward lower temperatures, reflecting the lower stability of these alkylgallium compounds.

**InR<sub>3</sub> Decomposition Studies.** Investigations of InP growth from trimethylindium ( $\text{InMe}_3$ ) and phosphine ( $\text{PH}_3$ ) have followed lines similar to those of GaAs. Preliminary results indicated that thermal decomposition of the In precursors depended on the carrier gas ( $\text{H}_2$ ,  $\text{He}$ )<sup>57</sup> and that the reaction to form InP with  $\text{PH}_3$  was affected by parasitic side reactions.<sup>58</sup> The assumptions were that they were caused by initial formation of Lewis complexes of the type  $\text{InMe}_3\cdot\text{PH}_3$  and  $\text{InEt}_3\cdot\text{PH}_3$ , which are stable only at low temperature but could decompose before dissociation, forming polymeric involatile substances deposited on the walls of the reactor. On the other hand,  $\text{PH}_3$  can pyrolyze both heterogeneously below 800 °C over InP and GaP and homogeneously above 800 °C. Pyrolysis of  $\text{InMe}_3$  was homogeneous in  $\text{H}_2$ , but in  $\text{N}_2$  surface effects occurred. The  $\text{InMe}_3/\text{PH}_3$  system was studied by  $\text{D}_2$ -labeling experiments.<sup>59</sup> It was shown that  $\text{PH}_3$  thermal decomposition did not depend on carrier gas.<sup>60</sup> In  $\text{D}_2$  ambient, only  $\text{H}_2$  was detected as the  $\text{PH}_3$  decomposition product by mass spectrometry, with no HD formed in addition to that present as a  $\text{D}_2$  trace impurity or as a small contribution from the  $\text{PH}_2\text{D}$  species. Moreover decomposition of  $\text{PH}_3$  was found to be first order, indicating P-H bond breaking as the rate-determining step. Addition of  $\text{InMe}_3$  caused a lowering in the  $\text{PH}_3$  decomposition temperature. This temperature decreased with increasing  $[\text{InMe}_3]/[\text{PH}_3]$  molar ratio in a way analogous to the  $\text{GaMe}_3/\text{AsH}_3$  system.<sup>45</sup> Above 300 °C the observed slowing down of the decomposition rate was explained by the concomitant formation of  $\text{PH}_{3-x}(\text{CH}_3)_x$  in the vapor by transfer of  $\text{CH}_3$  groups from In to P species. The decomposition temperature of  $\text{InMe}_3$  in the presence of  $\text{PH}_3$  was lowered by about 50 °C, and only  $\text{CH}_4$  was found as decomposition product even in the presence of  $\text{D}_2$ . No  $\text{CH}_3\text{D}$  was detected. Thus it has been inferred that an interaction between  $\text{InMe}_3$  and  $\text{PH}_3$  occurs prior to the decomposition of the two single precursors, probably through the formation of an adduct of the type  $\text{Me}_3\text{In}\cdot\text{PH}_3$  in the vapor phase, which by homogeneous release of a  $\text{CH}_4$  molecule, causes the formation of a compound of the type  $(\text{CH}_3)_2\text{InPH}_2$ , from which two  $\text{CH}_4$  molecules are subsequently liberated either homogeneously or heterogeneously. In any case it has been pointed out that the proposed adduct, reported to be unstable at room temperature,<sup>58</sup> should be short-lived with two possible decay pathways:



Such studies have been repeated with a more detailed analysis of the gaseous products arising from the pyrolysis of  $\text{InMe}_3$  in  $\text{He}$ ,  $\text{H}_2$ , and  $\text{D}_2$  ambients. In the first case<sup>60</sup>  $\text{C}_2\text{H}_6$  was the main product, along with a limited amount of  $\text{CH}_4$  (a small amount of C deposit was simultaneously observed).  $\text{C}_2\text{H}_6$  formation was also found in the system  $\text{InMe}_3/\text{D}_2$ , where the main product was  $\text{CH}_3\text{D}$ . With the  $\text{InMe}_3/\text{H}_2$  system also,  $\text{CH}_4$  is the dominant product (in

(57) Jackson, D. A. *J. Cryst. Growth* 1989, 94, 459.

(58) Larsen, C. A.; Stringfellow, G. B. *J. Cryst. Growth* 1986, 75, 247.

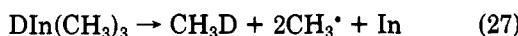
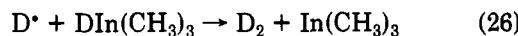
(59) Larsen, C. A.; Buchan, N. I.; Stringfellow, G. B. *J. Cryst. Growth* 1987, 85, 148.

(60) Buchan, N. I.; Larsen, C. A.; Stringfellow, G. B. *Appl. Phys. Lett.* 1987, 51, 1024.

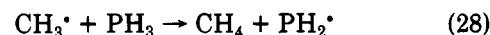
neither of the two last cases was a C deposit observed). For the three systems the rate constants  $k_g$  follow the expressions<sup>61</sup>



$$\log k_g (\text{s}^{-1}) = 17.9 - (54.0 \text{ kcal/mol})/(2.303RT)$$


$$\log k_g (\text{s}^{-1}) = 13.4 - (39.8 \text{ kcal/mol})/(2.303RT)$$



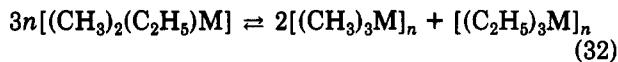

$$\log k_g (\text{s}^{-1}) = 15.0 - (42.6 \text{ kcal/mol})/(2.303RT)$$

Several decomposition models have been considered. Previous data<sup>58</sup> suggested that homolysis of the first two In-C bonds occurs for the three systems according to  $\text{InMe}_3 \rightarrow 2\text{CH}_3^{\cdot} + \text{InCH}_3$ , the rate being enhanced in the sequence  $\text{He} < \text{D}_2 < \text{H}_2$ . The decomposition involves subsequently the radical reactions  $\text{CH}_3^{\cdot} + \text{D}_2 \rightarrow \text{CH}_3\text{D} + \text{D}^{\cdot}$ ,  $\text{CH}_3^{\cdot} + \text{H}_2 \rightarrow \text{CH}_4 + \text{H}^{\cdot}$ , and  $\text{CH}_3^{\cdot} \rightarrow \text{C}_2\text{H}_6$ . The present data may be accounted for, if also the new reactions (24)–(27) (where D may be replaced by H) are



postulated to occur in which the "hypervalent" species  $\text{DInMe}_3$  ( $\text{HInMe}_3$ ) plays an important role. Although alternative reactions cannot be ruled out, the overall system proposed seems the most adequate to explain the observed products.<sup>61</sup> Addition of  $\text{PH}_3$  to  $\text{InMe}_3$  in  $\text{He}$ ,  $\text{H}_2$ , and  $\text{D}_2$ , respectively, led further to the definition of kinetic parameters for InP growth.<sup>62</sup> In line with previous suggestions<sup>59</sup> it has been deduced that at low temperature the decompositions of  $\text{InMe}_3$  and  $\text{PH}_3$  are strictly interconnected and occur heterogeneously, but on increasing temperature ( $>400$  °C) the homogeneous pathway must gain importance and eventually  $\text{InMe}_3$  could partially decompose independently as inferred from the formation of  $\text{C}_2\text{H}_6$  and  $\text{CH}_3\text{D}$  at the lowest (2:1:1)  $[\text{PH}_3]/[\text{InMe}_3]$  ratio.<sup>63</sup> Above 400 °C in the homogeneous regime the reaction sequence (28)–(31) (where  $\text{PH}_2^{\cdot}$  reflects the role of D in




(24) and (27)) has been suggested to explain the mechanism on the basis of the experimental data. It has been pointed out that many aspects of the reactivity of  $\text{InMe}_3$  with  $\text{PH}_3$  are reminiscent of the analogous system  $\text{GaMe}_3/\text{AsH}_3$  (and the model proposed by Reep and Gandhi<sup>56</sup>). However in  $\text{GaMe}_3/\text{AsH}_3$  even traces of  $\text{C}_2\text{H}_6$  and  $\text{CH}_3\text{D}$  were absent. Here the presence of  $\text{CH}_3\text{D}$  and  $\text{C}_2\text{H}_6$  as reaction products gives an indication that  $\text{InMe}_3$  may also partially decompose independently before association with  $\text{PH}_3$ , especially when this ligand is present in low concentration.<sup>63</sup> On the other hand the participation

(61) Buchan, N. I.; Larsen, C. A.; Stringfellow, G. B. *J. Cryst. Growth* 1988, 92, 591.

(62) Buchan, N. I.; Larsen, C. A.; Stringfellow, G. B. *J. Cryst. Growth* 1988, 92, 605.

(63) It must be noted that here comparison is made between  $\text{In}(\text{CH}_3)_3/\text{PH}_3/\text{H}_2$  and  $\text{Ga}(\text{CH}_3)_3/\text{AsH}_3/\text{H}_2$  systems with V/III ratio = 2.1 for the In system and 10 for the Ga system.

of a  $\text{Me}_3\text{In}\cdot\text{PH}_3$  adduct is important for the growth mechanism. In fact it may lead to the formation of InP but also may cause parasitic reactions with formation of polymeric involatile materials<sup>63</sup> if several parameters such as gas flow rate, point of mixing of precursors, reactor design, reagent purity, etc., are not optimized. The quality and uniformity of InP materials may be compromised because  $\text{InMe}_3$  is a solid and its sublimation rate varies with the time of use of the precursor container (bubbler). Consequently the quantity of  $\text{InMe}_3$  supplied to the reaction zone is not constant.<sup>64</sup> Only recently have devices and special procedures been suggested and adopted in order to overcome such difficulties.<sup>65</sup> Originally the liquid  $\text{InEt}_3$  was preferred to the solid  $\text{InMe}_3$  as a precursor for InP epitaxial growth particularly at reduced pressures, but currently the improved growth conditions (especially purity and reactor design) have refocused the interest toward  $\text{InMe}_3$  or its volatile adducts at atmospheric pressure.<sup>66</sup> However, a compromise between trimethyl- and triethylindium has recently given rise to  $\text{InMe}_2\text{Et}$  (dimethylethylindium) as a potential precursor with some advantages over both the individual compounds. Although good-quality InP and  $\text{In}_x\text{Ga}_{1-x}\text{As}$  materials<sup>67-69</sup> have been grown with  $\text{InMe}_2\text{Et}$ , doubt has been cast on the thermal stability of this compound as well as of some analogous heteroleptic Al derivatives that would compromise their use in MOCVD growth. In fact, <sup>1</sup>H NMR spectra of these compounds dissolved in benzene or toluene<sup>70</sup> show evolution of proton signals at variable temperature, which may be consistent with disproportionation equilibria of the type given in eq 32, where  $n = 1$ , M = In, and  $n = 2$ , M = Al.



Similar disproportionation has been verified also with the corresponding diphos and  $\text{NMe}_3$  adducts. If these characteristics are not limited to studies in solution but persisted also in the pure liquids, then the above compounds are not suitable precursors in MOCVD since they would result in mixtures of a range of compounds. From this mixture volatile species are preferentially depleted during the operation, making the control of the flowing precursors unreliable. In the extreme these precursors would be not better than or different from the separate  $\text{InMe}_3$  and  $\text{InEt}_3$ .

**Growth of Semiconductor Alloys.** The importance of III-V alloy semiconductors is due to the fact that both energy gap and lattice parameters may be engineered by simple variation of the composition.<sup>71</sup> From the chemical point of view the main problem is to correlate the composition of the solid material with the gas-phase composition and growth conditions in general. Here the specific interactions between the different precursors in the gaseous mixture may affect the characteristics of the growth process and hence the quality of epitaxial materials. The  $\text{Al}_x\text{Ga}_{1-x}\text{As}$  system grown from  $\text{AlMe}_3$ ,  $\text{GaMe}_3$ , and  $\text{AsH}_3$

and, in particular, the amount of Al incorporated have been studied by PL (photoluminescence), ERD (elastic recoil detection), and ICPAES (inductively coupled plasma atomic emission spectroscopy).<sup>72</sup> It has been shown that  $x_s$  ( $x$  in  $\text{Al}_x\text{Ga}_{1-x}\text{As}$ ) and  $x_g$  ( $x_g = [\text{AlMe}_3]/[\text{AlMe}_3 + [\text{GaMe}_3]]$ ), i.e., the composition of the organometallic gas phase) are interrelated according to the expression  $x_s = x_g[1 + (\alpha - 1)x_g]$  derived from a fit to the experimental data.  $\alpha$  is a variable that increases with increasing temperature, and so the Al fraction, in the solid phase at a given  $x_g$ , increases with  $T_G$ . The enrichment in Al of  $\text{Al}_x\text{Ga}_{1-x}\text{As}$  at high temperature has been rationalized in terms of the stronger Al-As bond with respect to the Ga-As bond and the faster desorption of Ga from the growing surface as compared to Al. Apparent discrepancies with the data of other authors<sup>4</sup> have been ascribed to differences in the adopted growth conditions (temperature, concentration, and velocity profiles). The same Al incorporation trend was found also with the  $\text{AlMe}_3/\text{GaMe}_3/\text{AsEt}_3$  system.<sup>73</sup>  $\text{In}_x\text{Ga}_{1-x}\text{P}$  was grown from  $\text{InEt}_3$ ,  $\text{GaEt}_3$ , and  $\text{PH}_3$  under vacuum (without any carrier gas).<sup>74,75</sup> The growth rate decreased with increasing growth temperature in the range 500–700 °C probably due to the following effects: (a) the premature decomposition of metalorganic precursors increasing with increasing temperature; (b) the desorption of species involved in the growth is higher at higher temperature.

The variation of the Ga fraction in the solid with the  $[\text{GaEt}_3]/[\text{GaEt}_3 + [\text{InEt}_3]]$  ratio deviated from linearity and showed more effective incorporation of Ga than In in the layer. Here the cause was identified as the formation of the adduct between  $\text{PH}_3$  and  $\text{InEt}_3$ ; such adducts are well-known<sup>3</sup> to undergo premature reaction with ethane elimination and consequently to lower the concentration of  $\text{InEt}_3$  contributing to the  $\text{In}_x\text{Ga}_{1-x}\text{P}$  growth.  $\text{GaEt}_3$  and  $\text{PH}_3$  may well form analogous adducts, which, however, do not suffer similar depleting reactions under the adopted growth conditions. On the contrary, In is incorporated in  $\text{In}_x\text{Ga}_{1-x}\text{As}$  more efficiently than Ga when both In and Ga were supplied from their adducts  $\text{InMe}_3\text{PEt}_3$  and  $\text{GaMe}_3\text{PEt}_3$ ,<sup>39,76</sup> and this has been justified in terms of the lower metal-C bond dissociation energy of  $\text{In}-\text{CH}_3$  (205–218 kJ mol<sup>-1</sup>) than  $\text{Ga}-\text{CH}_3$  (259–272 kJ mol<sup>-1</sup>), in addition to a concomitant enhanced resistance of the In adduct to  $\text{PH}_3$ -promoted parasitic reactions. In-organometallic compounds undergo such parasitic reactions not only with  $\text{PH}_3$  but also with  $\text{AsH}_3$ , since it has been recently reported that in  $\text{In}_x\text{Ga}_{1-x}\text{As}$  growth<sup>77,78</sup> interaction between  $\text{InEt}_3$  and  $\text{AsH}_3$  following the equilibrium



may occur for which a constant of 30 Torr<sup>-1</sup> has been determined. In other cases such as  $\text{GaAs}_x\text{P}_{1-x}$ <sup>79</sup> it is more difficult to study the compositional variations and dependences because uncontrollable factors (different pyrolysis temperatures of  $\text{PH}_3$  and  $\text{AsH}_3$ , reactions between pyrolysis products and their adsorption/desorption pro-

(64) Butler, B. R.; Stagg, J. P. *J. Cryst. Growth* 1989, 94, 481.  
 (65) Yoshikawa, A.; Sugino, T.; Nakamura, A.; Kano, G.; Teramoto, I. *J. Cryst. Growth* 1988, 93, 532.  
 (66) Bradley, D. C.; Faktor, M. M.; Frigo, D. M.; Smith, L. M. *J. Cryst. Growth* 1988, 92, 37.  
 (67) Fry, K. L.; Kuo, C. P.; Larsen, C. A.; Cohen, R. C.; Stringfellow, G. B. *J. Electron. Mater.* 1986, 15, 91.  
 (68) Knauf, J.; Schmitz, D.; Strauch, G.; Jurgensen, H.; Heyen, M.; Melas, A. *J. Cryst. Growth* 1988, 93, 34.  
 (69) York, P. K.; Beernink, K. J.; Kim, J.; Coleman, J. J.; Fernandez, G. E.; Wayman, C. M. *Appl. Phys. Lett.* 1989, 55, 2476.  
 (70) Bradley, D. C.; Chudzynska, H.; Frigo, D. M. *Chemtronics* 1988, 3, 159.  
 (71) Razeghi, M.; Defour, M.; Omnes, F.; Maurel, P.; Bigan, E.; Acher, O.; Nagle, J.; Brilouet, F.; Portal, J. C. *J. Cryst. Growth* 1988, 93, 776.

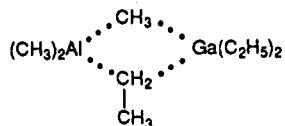
(72) van Sark, W. G.; Janssen, W. G. I.; de Croon, M. H. J. M.; Tang, X.; Giling, L. J. *J. Appl. Phys.* 1988, 64, 195.  
 (73) Fujita, S.; Imaizumi, M.; Araki, S.; Takeda, Y.; Sasaki, A. *J. Cryst. Growth* 1988, 93, 1.

(74) Ozasa, K.; Yuri, M.; Nishino, S.; Matsunami, H. *J. Cryst. Growth* 1988, 89, 85.

(75) Ozasa, K.; Yuri, M.; Nishino, S.; Matsunami, H. *J. Cryst. Growth* 1988, 93, 177.

(76) Monserrat, K. J.; Tothill, J. N.; Haigh, J.; Moss, R. H.; Baxter, C. S.; Stobbs, W. M. *J. Cryst. Growth* 1988, 93, 466.

(77) Whiteley, J. S.; Gandhi, S. K. *J. Electrochem. Soc.* 1989, 136, 1191.


(78) Agnello, P. D.; Gandhi, S. K. *J. Electrochem. Soc.* 1988, 135, 1530.

(79) Biefeld, R. M. *J. Electron. Mater.* 1986, 15, 193.

cesses, etc.) may be involved. The control of composition can be considered as the main problem not only with ternary alloys<sup>80,81</sup> but also with quaternary (e.g.,  $In_xGa_{1-x}P_xAs_{1-y}$ ,  $Al_xGa_{1-x}P_xAs_{1-y}$ ,  $Al_xIn_{1-x}P_xAs_{1-y}$ , and  $In_xGa_{1-x}Sb_yAs_{1-y}$ ) alloys.<sup>82,83</sup> The incorporation of the various elements has been treated taking into consideration thermodynamic and kinetic aspects of various hypothetical reactions involved in the growth process.<sup>84</sup> For instance,  $InAs_xP_{1-x}$  composition<sup>85</sup> shows a peculiar linear dependence of  $x$  versus  $[p(AsH_3)]/[p(AsH_3) + p(PH_3)]$  partial pressure ratio in that the As incorporation is very much higher than that of  $P$  ( $x = 0.35$  occurs at a partial pressure ratio as low as  $10^{-2}$  Torr). It has been suggested that both the difference in pyrolysis rate of  $AsH_3$  and  $PH_3$  and (more effectively) the higher sticking coefficient of As over  $P$  may be the cause. Sb-based alloys  $GaSb_xP_{1-x}$  and  $InSb_xP_{1-x}$ <sup>86</sup> are attracting interest because they may be grown in a composition range where equilibrium thermodynamics predicts immiscibility gaps. The growth of such metastable alloys is a demonstration of the wide potential of kinetically driven MOCVD reactions well away from equilibrium. The precursors are generally  $GaMe_3$ ,  $InMe_3$ ,  $AsH_3$ , and  $PH_3$  for  $Ga$ ,  $In$ ,  $As$ , and  $P$ , respectively, while  $SbMe_3$  is used as  $Sb$  precursor. The  $Sb$  incorporation has been studied for  $InP_xSb_{1-x}$  and is far more efficient than  $P$  incorporation, although  $InP$  is more stable than  $InSb$ . This apparent contradiction is explained by considering that this growth is carried out at moderately low temperature where the decomposition of  $PH_3$  (and then the  $P$  incorporation) is very much slower than that of  $SbMe_3$ <sup>86</sup> and by taking into account an enhanced evaporation rate of  $P$  with respect to  $Sb$ . Interaction between organometallic precursors in the gas phase prior to materials growth may affect the growth parameters. Thus in the growth of  $Al_xGa_{1-x}As$ <sup>87</sup> from  $AlMe_3/GaEt_3$  and  $AsH_3$ , experimental growth rate, and solid-phase composition are found to fit calculated values (based on the values for  $AlAs$  and  $GaAs$ ) only under the hypothesis that a fraction of  $GaEt_3$  and  $AlMe_3$  did not contribute to the formation of  $Al_xGa_{1-x}As$ . It was suggested that vapor-phase interaction between ( $AlMe_3$ )<sub>2</sub> and  $GaEt_3$  could lead to a binuclear compound:



in which  $Al$  and  $Ga$  are bridged through electron deficient C-centered bonds:



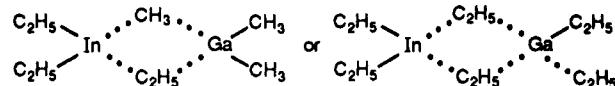
Reaction 34 can be specific for the  $AlMe_3$  and  $GaEt_3$  system but not for the  $AlMe_3$  and  $GaMe_3$  system as in this case the growth rate of  $Al_xGa_{1-x}As$  has been reported to be the sum of the single growth rate of  $AlAs$  and  $GaAs$ . The new binuclear  $Ga-Al$  compound was assumed to have a low decomposition rate, diffusion efficiency, and vapor

(80) Leys, M. R.; Titze, H.; Samuelson, L.; Petruzzello, J. *J. Cryst. Growth* 1988, 93, 504.

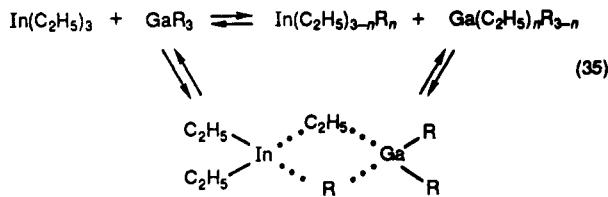
(81) Smeets, E. I. J. M. *J. Cryst. Growth* 1987, 82, 385.

(82) Mircea, A.; Mellet, R.; Rose, B.; Robein, D.; Thibierge, H.; Leroux, G.; Daste', P.; Godefroy, S.; Ossart, P. *J. Electron. Mater.* 1986, 15, 205.

(83) Koukitu, A.; Seki, H. *J. Cryst. Growth* 1986, 76, 233.


(84) Eguchi, K.; Ohba, Y.; Kushibe, M.; Funamizu, M.; Nakanisi, T. *J. Cryst. Growth* 1988, 93, 88.

(85) Huang, K. H.; Wessels, B. W. *J. Cryst. Growth* 1988, 93, 547.


(86) Jou, M. J.; Cherng, Y. T.; Jen, H. R.; Stringfellow, J. B. *J. Cryst. Growth* 1988, 93, 62.

(87) Shinohara, M.; Imamura, Y.; Yanagawa, F. *Jpn. J. Appl. Phys.* 1987, 26, L1459.

pressure in order to explain the reduced growth rate of  $Al_xGa_{1-x}As$ . On this basis reaction 34 can be considered parasitic. Similar alkyl exchange and interaction between organometallic molecules in the vapor phase have been observed and investigated by mass spectrometry in the systems  $InEt_3/GaMe_3$  and  $InEt_3/GaEt_3$  used in the growth of  $In_xGa_{1-x}As$  films from  $AsH_3$ .<sup>88</sup> It was found that both new mononuclear  $InEt_{3-n}R_n$  and  $GaEt_{n}R_{3-n}$  species such as



can form through the equilibria



where  $R = CH_3$  or  $C_2H_5$ ,  $n < 3$ .

Interaction of  $InEt_3$  with  $GaR_3$  significantly influences its reaction with  $AsH_3$  (leading to  $In$  incorporation in  $In_xGa_{1-x}As$ ) and is dependent on the nature of  $R$ . In fact in the presence of  $GaEt_3$  the reaction of  $InEt_3$  with  $AsH_3$  is 40% suppressed with respect to  $InEt_3$  alone and 60% in the presence of the same amount of  $GaMe_3$ . It was concluded that the interaction of  $InEt_3$  with  $GaMe_3$  was stronger than with  $GaEt_3$  and that the reactivity of  $In$  toward  $AsH_3$  was reduced because the  $In$  atoms in such binuclear compounds were tetracoordinated and then coordinatively saturated and reluctant to undergo further reaction.

It is evident that the studies on reaction mechanisms involved in MOCVD process confirm the previously formulated hypothesis that they are dependent on a large number of physical and chemical parameters and that growth conditions (V/III ratio, total pressure, temperature, gas-flow rate, etc.) may drastically modify the importance of particular reactions. A further complication is that semiconductor growth by MOCVD involves both homogeneous (gas phase) and heterogeneous (surfaces catalyzed) reactions, and it is usually difficult to separate the two components. Furthermore, it is very often hard to correlate the results of experiments in a consistent and correct way since full details are not always available. One particular problem arises from the difference between *ex situ* and *in situ* experimental data. CARS investigations,<sup>89</sup> a typical *in situ* diagnostic technique, show a much lower decomposition temperature for  $AsH_3$  and  $PH_3$  with respect to the corresponding value obtained by *ex situ* experiments (mainly mass spectrometry); importantly, addition of  $GaMe_3$  to  $AsH_3$  and  $InMe_3$  to  $PH_3$  does not affect the decomposition temperature of the hydrides.<sup>89</sup> Thus an interaction between organometals and hydrides (such as through formation of Lewis complexes) must be ruled out on the basis of these data.

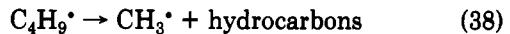
#### Incorporation of Carbon and Its Compounds

The incorporation of carbon and its compounds as intrinsic impurities is one of the most debated problems in MOCVD. At first sight it appears quite surprising that

(88) Agnello, P. D.; Gandhi, S. K. *J. Cryst. Growth* 1989, 94, 311.

(89) Luckerath, R.; Koss, H. J.; Tommack, P.; Waschbusch, M.; Balk, P.; Richter, W. Abstract of 3rd European Workshop on MOVPE; Montpellier June 4-7, 1989; p 91.

pyrolysis of compounds containing such considerable numbers of alkyl groups leaves such small amounts of C-containing species (normally less than ppm level) in their decomposition products. This problem is closely connected with the decomposition mechanisms of organometallic precursors and their reactivity with organoarsines and -phosphines and the precise experimental conditions employed during MOCVD. Currently it is possible to prepare GaAs and InP with room-temperature carrier concentrations of the order of  $10^{13}$  cm $^{-3}$  (i.e., 1 ppb impurity level) by using several combinations of reagents and carefully controlled growth conditions.


**Carbon Incorporation from Metal (Al, Ga, In) Precursors.** It is assumed, sometimes erroneously and without justification, by many researchers that elemental carbon rather than carbonaceous species is the actual impurity.

Early studies<sup>26</sup> concerning GaAs have demonstrated that (a) C incorporation is lower with GaEt<sub>3</sub> than with GaMe<sub>3</sub>; this was ascribed to the different mode of decomposition, which in the case of GaMe<sub>3</sub> produces unstable CH<sub>3</sub> radicals while GaEt<sub>3</sub> decomposes predominantly via  $\beta$ -elimination, giving stable species such as ethylene and metal hydride; (b) increasing [AsH<sub>3</sub>]/[GaMe<sub>3</sub>] ratio reduced the carbon content and caused a p-n transition in the conductivity type of GaAs. In fact such an increase is believed to saturate group V sites, thus preventing the adsorption of carbon acceptor impurities; (c) C incorporation from the stable hydrocarbons produced in the reaction growth may be ruled out in view of the SIMS results. These have demonstrated that addition of <sup>13</sup>C-enriched gaseous hydrocarbons (CH<sub>4</sub>, C<sub>2</sub>H<sub>2</sub>, C<sub>2</sub>H<sub>4</sub>, C<sub>3</sub>H<sub>6</sub>) to the reactor atmosphere had little, if any, influence on C content in GaAs thin films.

Systematic studies on the effect of the nature of R (CH<sub>3</sub>, C<sub>2</sub>H<sub>5</sub>, *t*-C<sub>4</sub>H<sub>9</sub>)<sup>55</sup> have shown that ethyl and *tert*-butyl derivatives behave similarly, incorporating far less C than methyl derivatives; this is not unexpected as *tert*-butyl organometallic compounds decompose via  $\beta$ -elimination as do ethyl compounds. In general the same authors<sup>55</sup> concluded that C contamination is an effect of incomplete dissociation of reactants in the gas phase<sup>90</sup> so that the final decomposition of reactants involving high M-C bond strength takes place on the growing layer. This hypothesis is in line with parallel experiments under MOMBE conditions where gas-phase reactions are completely absent and C uptake from GaMe<sub>3</sub> is markedly higher than from GaEt<sub>3</sub>. As a consequence, low thermal stability precursors should be recommended for reduced C incorporation into thin films, and concomitant parasitic reactions that occur before entering into hot reaction zone should be avoided. Pressure effects have been studied by Kimura et al.<sup>28</sup> in the growth of GaAs from GaEt<sub>3</sub> and AsH<sub>3</sub>. In contrast to expectation,<sup>27</sup> they found increasing C in the layer with decreasing reactor pressure (<5 Torr). They also studied<sup>91</sup> the volatile reaction products during growth of GaAs from the GaMe<sub>3</sub>/AsH<sub>3</sub> and GaEt<sub>3</sub>/AsH<sub>3</sub> systems in the pressure range 0.05–100 Torr.

With the first system, CH<sub>3</sub> radicals and CH<sub>4</sub> were formed predominantly and moderate amount of methyl-arsines Me<sub>3-n</sub>AsH<sub>n</sub> were detected. As the pressure was lowered, an increasing concentration of CH<sub>3</sub> radicals was observed relative to methylarsines. This observation to-

gether with previous findings<sup>92</sup> of a higher C content in GaAs grown at reduced pressure suggests that the higher content of CH<sub>3</sub> radicals is responsible for C incorporation. This has been confirmed by Williams et al. in recent studies.<sup>42b</sup> In the ethyl-based system, C<sub>2</sub>H<sub>4</sub> probably was the main product of  $\beta$ -elimination above 20 Torr, but below this pressure the dominant species was C<sub>2</sub>H<sub>6</sub> and below 1 Torr an increased amount of C<sub>3</sub>H<sub>8</sub> appeared in the gas mixture; there a correlation of the C<sub>2</sub>H<sub>4</sub> amount with that of C<sub>2</sub>H<sub>5</sub> radicals suggested an origin for C<sub>2</sub>H<sub>4</sub> different than  $\beta$ -elimination. Concomitantly at these low pressures, C incorporation in GaAs was detected also with the GaEt<sub>3</sub>/AsH<sub>3</sub> system. Although the number of radical species formed at such low pressures was too high to be identified, experimental evidence indicated that under such conditions, complicated processes may lead to the formation of CH<sub>3</sub> or of monocarbon species such as CH<sub>n</sub> (n = 1–3) from C<sub>2</sub>H<sub>5</sub> produced from the primary Ga-C<sub>2</sub>H<sub>5</sub> homolytic dissociation, as schematized in eqs 36–38.



In such a way it was concluded that the C incorporation mechanism at low growth pressures is the same for GaMe<sub>3</sub>- and GaEt<sub>3</sub>-based systems, being due to the role of CH<sub>3</sub> radicals in both cases.<sup>42b,91</sup> Moreover, it must be mentioned that at low pressure, surface reactions, probably leading to C incorporation, gain importance over gas-phase reactions.<sup>90</sup>

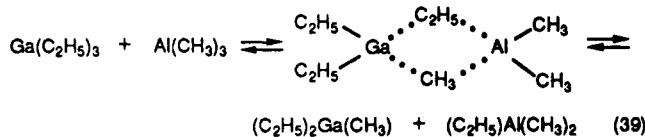
Reed et al.<sup>93</sup> studied the combined effects of V/III ratio and growth temperature and found that the critical V/III ratio corresponding to p-n transition, i.e., to low C content, varied with growth temperature in the range 550–680 °C, showing a minimum around 600 °C. Below 600 °C the C incorporation was considered to depend on the number of undissociated GaMe<sub>3</sub> adsorbed on the substrate, where they subsequently react with adsorbed AsH<sub>3</sub>, eliminating C atoms of CH<sub>3</sub> as CH<sub>4</sub>. Since the dissociation of GaMe<sub>3</sub> increases with temperature (correspondingly the adsorption of GaMe<sub>3</sub> diminishes), the amount of AsH<sub>3</sub> necessary to dissociate GaMe<sub>3</sub> molecules (and then V/III) increases with decreasing temperature. Above 600 °C the thermal dissociation of AsH<sub>3</sub> becomes important, thus increasing the concentration of gaseous AsH<sub>3</sub> necessary to maintain a sufficient number of adsorbed AsH<sub>3</sub> molecules to break Ga-C bonds. These points are important in that they stress the different role of AsH<sub>3</sub> and GaMe<sub>3</sub> in C incorporation, even though they should be integrated by further considerations. In fact above 600 °C, where Ga(CH<sub>3</sub>)<sub>3</sub> is completely dissociated in gas phase,<sup>45,46,48</sup> the decomposition of AsH<sub>3</sub> supplies As atoms which occupy completely the group V sites and greatly reduce the probability of C atoms coming from CH<sub>3</sub> radicals being incorporated. Both these suggestions are in general agreement with experimental observation reported elsewhere and especially with the role of Bu<sup>t</sup>AsH<sub>2</sub> in GaAs growth<sup>94</sup> and Bu<sup>t</sup>PH<sub>2</sub> in InP growth.<sup>95</sup> The C incorporation into InP shows aspects analogous to the C incorporation into GaAs, even though it has been generally reported that a smaller difference

(92) Takagishi, S.; Mori, H. *Jpn. J. Appl. Phys.* 1983, 22, L795.

(93) Reed, A. D.; Bose, S. S.; Stillman, G. E. *Appl. Phys. Lett.* 1989, 54, 1262.

(94) Larsen, C. A.; Buchan, N. I.; Li, S. H.; Stringfellow, G. B. *J. Cryst. Growth* 1988, 93, 15.

(95) Chen, C. H.; Cao, D. S.; Stringfellow, G. B. *J. Electron. Mater.* 1988, 17, 67.


(90) Balk, P.; Brauers, A. In *Mechanism of Reactions of Organometallic Compounds with Surfaces*; Cole-Hamilton, D. J., Williams, J. O., Eds.; NATO ASI Ser.; Ser. B Phys. 1989, 198, 179.

(91) Horiguchi, S.; Kimura, K.; Takagishi, S.; Kamon, K.; Mashita, M.; Mihara, M.; Ishii, M. *Jpn. J. Appl. Phys.* 1987, 26, 1002.

exists between  $\text{InMe}_3$  and  $\text{InEt}_3$  than between  $\text{GaMe}_3$  and  $\text{GaEt}_3$  systems.<sup>13b</sup> In any case the phenomenon is less relevant than with  $\text{GaAs}$ , and it has been observed that care must be taken in the identification of the C acceptor peak via low-temperature PL spectra.<sup>26c</sup> With the present status of experimental technique (reactor design, purity of precursors, growth conditions)<sup>96-99</sup> it is possible to obtain  $\text{InP}$  with extraordinarily high carrier mobility and low carrier concentration.<sup>100</sup>  $\text{InP}$  is n-type and only moderately contaminated by C even when grown at low V/III ratios or from the  $\text{InMe}_3/\text{P}_4/\text{H}_2$  system,<sup>101</sup> i.e., under conditions in which the concentration of P-H species, which are recognized as very efficient scavengers for removing  $\text{CH}_3$  radicals through formation of methane, should be relatively low or completely absent.

However, while in  $\text{GaAs}$  growth using  $\text{GaMe}_3$  and  $\text{AsH}_3$  increasing  $T_G$  increases C incorporation, the reverse effect is observed in  $\text{InP}$  growth<sup>31,95</sup> at least in a comparable temperature regime. This seems due to the higher decomposition temperature of  $\text{PH}_3$  relative to that of  $\text{AsH}_3$ ; therefore, the number of P atoms available for  $\text{InP}$  formation increases with  $T_G$  and then reduces the possibility of C occupying the P vacant sites.<sup>31</sup>

**C in Alloys.** Many studies have concerned  $\text{AlGaAs}$ , in which C may derive from both Ga and Al precursors. Kuech et al.<sup>16</sup> discussed C incorporation taking into account various parameters such as growth temperature, nature of precursors, gas-phase  $[\text{AsH}_3]/([\text{AlMe}_3] + [\text{GaMe}_3])$  ratio and alloy composition (i.e.,  $x$  in  $\text{Al}_x\text{Ga}_{1-x}\text{As}$ ), whereas Tamamura<sup>102</sup> studied the influence of substrate orientation. C increased with Al content, and the reason was ascribed to the higher Al-C bond strength compared to the Ga-C bond strength. Growth temperature caused a steady increase in C content in the range 600–700 °C, but toward 800 °C the rate of C incorporation was slower. Using  $\text{GaEt}_3$  (instead of  $\text{GaMe}_3$ ) and  $\text{AlMe}_3$  was found by the same authors<sup>26</sup> to significantly reduce the C content. In this case reactions preliminary to the growth process can cause R-group transfer from Ga to Al and vice versa:<sup>103</sup>



so that the precursors really involved in the growth may be different from those initially withdrawn by the carrier gas from the metalorganic source. In particular, equilibria 39 may cause the formation of  $\text{Me}_2\text{AlEt}$ , which in turn can give  $\text{Me}_2\text{AlH}$  through  $\beta$ -elimination. It has been reported elsewhere that the  $\text{Me}_2\text{AlH}/\text{GaMe}_3/\text{AsH}_3$  system produces  $\text{Al}_x\text{Ga}_{1-x}\text{As}$  with greatly reduced C content.<sup>104</sup>

(96) Trush, E. J.; Cureton, C. G.; Trigg, J. M.; Stagg, J. P.; Butler, B. R. *Chemtronics* 1987, 2, 62.  
 (97) Benzaquen, M.; Walsh, D.; Beaudoin, M.; Mazuruk, K.; Puetz, N. *J. Cryst. Growth* 1988, 93, 562.  
 (98) Nelson, A. W.; Spurdens, P. C.; Cole, S.; Walling, R. H.; Moss, R. H.; Wong, S.; Harding, M. J.; Cooper, D. M.; Devlin, W. J.; Robertson, M. J. *J. Cryst. Growth* 1988, 93, 792.  
 (99) Razeghi, M.; Maurel, P.; Omnes, F.; Defour, M.; Acher, O.; Tsui, D.; Wei, H. P.; Guldner, Y.; Vieren, J. P. *Appl. Phys. Lett.* 1987, 51, 1821.  
 (100) Thrush, E. J.; Cureton, C. G.; Briggs, A. T. R. *J. Cryst. Growth* 1988, 93, 870.  
 (101) Naitoh, M.; Soga, T.; Jimbo, T.; Umeno, M. *J. Cryst. Growth* 1988, 93, 52.  
 (102) Tamamura, K.; Ogawa, T.; Akimoto, K.; Mori, Y.; Kojima, C. *Appl. Phys. Lett.* 1987, 50, 1149.  
 (103) Mashita, M.; Horiguchi, S.; Shimazu, M.; Kamon, K.; Mihara, M.; Ishii, M. *J. Cryst. Growth* 1986, 77, 194.  
 (104) Bhat, R.; Koza, M. A.; Chang, C. C.; Schwarz, S. A. *J. Cryst. Growth* 1986, 77, 7.

**C from Organophosphine and Organoarsine Sources.** In principle, replacement of  $\text{AsH}_3$  and  $\text{PH}_3$  with their organo derivatives enhances the probability of C uptake by epitaxial layers.<sup>105</sup> This has been confirmed by results obtained with  $\text{As}(\text{CH}_3)_3$  even under precracking<sup>106</sup> vacuum chemical epitaxy conditions or by varying the carrier gas ( $\text{H}_2$  and He).<sup>107</sup> C incorporation from  $\text{As}^{(13)}\text{CH}_3$  was elegantly studied by Lum et al.<sup>24c</sup> using dynamic SIMS. No C from intentionally added  $^{13}\text{CH}_4$  gas was observed in  $\text{GaAs}$  grown from the  $\text{GaMe}_3/\text{AsH}_3$  or  $\text{GaMe}_3/\text{AsMe}_3$  systems. Similarly,  $\text{GaAs}$  (and  $\text{AlGaAs}$ ) grown from the  $\text{GaMe}_3/\text{AsEt}_3$  and  $\text{GaEt}_3/\text{AsEt}_3$  (or  $\text{GaMe}_3/\text{AlMe}_3/\text{AsEt}_3$ ) systems was contaminated by an excess of C<sup>10,19,108-110</sup> relative to the  $\text{AsH}_3$ -based process. Better results have been attained by adding  $\text{AsH}_3$  to the  $\text{GaMe}_3/\text{AsEt}_3$ <sup>111</sup> system, but the original purpose of replacing the highly toxic  $\text{AsH}_3$  in MOCVD is in this case defeated.  $\text{PR}_3$  compounds have been demonstrated not to be useful in MOCVD<sup>105</sup> probably due to their exceedingly high decomposition temperatures. Thus partially substituted phosphines and arsines have been investigated since it was expected that P-H or As-H bonds were essential to completely remove alkyl radicals from organometallics.

**C Incorporation and Decomposition Mechanism of  $\text{Bu}^t\text{AsH}_2$  and  $\text{Bu}^t\text{PH}_2$ .** Detailed mechanistic studies have been carried out on  $\text{GaAs}$  growth from  $\text{GaMe}_3$  and  $\text{Bu}^t\text{AsH}_2$ <sup>112-120</sup> and  $\text{GaMe}_3$ <sup>42b,110,121</sup> and on  $\text{GaP}$  growth from  $\text{GaMe}_3/\text{Bu}^t\text{PH}_2$ <sup>122</sup> systems in which C contamination was found to be particularly low. Jensen et al.<sup>113,114</sup> used  $\text{GaMe}_3$  and  $\text{GaEt}_3$  with  $\text{Bu}^t\text{AsH}_2$  for growing  $\text{GaAs}$  under reduced total pressure. No interaction with carrier gases was detected, but the deposition process was greatly influenced by gas-phase reactions and flow rate. The decomposition of the  $\text{GaR}_3/\text{Bu}^t\text{AsH}_2$  ( $\text{R} = \text{CH}_3, \text{C}_2\text{H}_5$ ) systems was different from that of  $\text{Bu}^t\text{AsH}_2$  and  $\text{GaR}_3$  alone, and the adduct  $\text{GaR}_3\text{AsBu}^t\text{H}_2$  was suggested as responsible for parasitic reactions that led to the formation of a low-volatility, polymeric substance with elimination of hydrocarbons. Direct experimental evidence for such an adduct was found only for  $\text{GaMe}_3$ . Stringfellow et al.<sup>115-119</sup> investigated the  $\text{GaMe}_3/\text{Bu}^t\text{AsH}_2$  system mainly with the

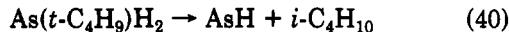
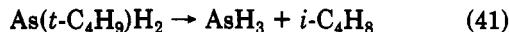

(105) Stringfellow, G. B. *J. Electron. Mater.* 1988, 17, 327.  
 (106) Vook, D. V.; Reynolds, S.; Gibson, J. F. *Appl. Phys. Lett.* 1987, 50, 1386.  
 (107) Fraas, L. M.; McLeod, P. S.; Weiss, R. E.; Partain, L. D.; Cape, J. A. *J. Appl. Phys.* 1987, 62, 299.  
 (108) Lum, R. M.; Klingert, J. K.; Wynn, A. S. *Appl. Phys. Lett.* 1988, 52, 1475.  
 (109) Speckman, D. M.; Wendt, J. P. *Appl. Phys. Lett.* 1987, 50, 676.  
 (110) Brauers, A.; Kayser, O.; Kall, R.; Heinecke, H.; Balk, P.; Hofmann, H. *J. Cryst. Growth* 1988, 93, 7.  
 (111) Speckman, D. M.; Wendt, S. P. *J. Cryst. Growth* 1988, 93, 29.  
 (112) Haacke, G.; Watkins, S. P.; Burkhardt, H. *Appl. Phys. Lett.* 1989, 54, 2029.  
 (113) Omstead, T. R.; Van Sickle, P. M.; Lee, P. W.; Jensen, K. F. *J. Cryst. Growth* 1988, 93, 20.  
 (114) Lee, P. W.; Omstead, T. R.; McKenna, D. R.; Jensen, K. F. *J. Cryst. Growth* 1988, 93, 134.  
 (115) Larsen, C. A.; Buchan, N. I.; Li, S. H.; Stringfellow, G. B. *J. Cryst. Growth* 1988, 93, 15.  
 (116) Larsen, C. A.; Buchan, N. I.; Li, S. H.; Stringfellow, G. B. *J. Cryst. Growth* 1989, 94, 663.  
 (117) Chen, C. H.; Larsen, C. A.; Stringfellow, G. B. *Appl. Phys. Lett.* 1987, 50, 218.  
 (118) Larsen, C. A.; Li, S. H.; Buchan, N. I.; Stringfellow, G. B. *J. Cryst. Growth* 1989, 94, 673.  
 (119) Li, S. H.; Buchan, N. I.; Larsen, C. A.; Stringfellow, G. B. *J. Cryst. Growth* 1989, 98, 309.  
 (120) Omstead, T. R.; Jensen, K. F. *Chem. Mater.* 1990, 2, 39.  
 (121) Hoare, R. D.; Khan, O. F. Z.; Williams, J. O.; Frigo, D. M.; Bradley, D. C.; Chudzynska, H.; Jacobs, P.; Jones, A. C.; Rushworth, S. A. *Chemtronics* 1989, 4, 78.  
 (122) Li, S. H.; Buchan, N. I.; Larsen, C. A.; Stringfellow, G. B. *J. Cryst. Growth* 1989, 96, 906.

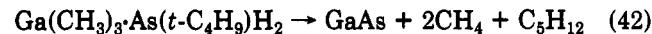
Table II. Alternative P and As Precursors Used in MOCVD


| compd                                           | vap press., Torr (temp, °C) | group III precursor used in growth    | mater        | mobility at 77 K, cm <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup> | ref      |
|-------------------------------------------------|-----------------------------|---------------------------------------|--------------|-------------------------------------------------------------------|----------|
| PEt <sub>2</sub> H                              |                             | InEt <sub>3</sub>                     | InP          |                                                                   | 126      |
| PBu <sup>t</sup> H <sub>2</sub>                 | 286 (23)                    | InMe <sub>3</sub>                     | InP          | 3800 <sup>a</sup>                                                 | 105      |
| PBu <sup>t</sup> H <sub>2</sub>                 |                             | InMe <sub>3</sub>                     | InP          |                                                                   | 95       |
| PBu <sup>t</sup> H <sub>2</sub>                 |                             | GaMe <sub>3</sub>                     | GaP          |                                                                   | 122      |
| AsMe <sub>3</sub>                               | 238 (20)                    | GaMe <sub>3</sub>                     | GaAs         | 7000                                                              | 106      |
| AsEt <sub>3</sub>                               | 15.5 (37)                   | AlMe <sub>3</sub> -GaMe <sub>3</sub>  | GaAs, AlGaAs | 15300                                                             | 73       |
| AsEt <sub>3</sub>                               |                             | AlMe <sub>3</sub> -GaMe <sub>3</sub>  | GaAs, AlGaAs |                                                                   | 111      |
| AsMe <sub>2</sub> H                             | 176 (0)                     | GaMe <sub>3</sub>                     | GaAs         | 5000 <sup>a</sup>                                                 | 124      |
| AsEt <sub>2</sub> H                             | 0.6 (18)                    | GaMe <sub>3</sub>                     | GaAs         | 64600                                                             | 127      |
| AsEtH <sub>2</sub>                              | 94 (-16)                    | GaMe <sub>3</sub> -InMe <sub>3</sub>  | GaInAs, GaAs | 56000                                                             | 128      |
| AsBu <sup>t</sup> H <sub>2</sub>                | 96 (-10)                    | AlMe <sub>3</sub> , GaMe <sub>3</sub> | AlGaAs, GaAs | 80000                                                             | 129      |
| AsBu <sup>t</sup> H <sub>2</sub>                |                             | AlMe <sub>3</sub> , GaMe <sub>3</sub> | AlGaAs, GaAs |                                                                   | 130, 131 |
| AsBu <sup>t</sup> H <sub>2</sub>                |                             | InMe <sub>3</sub>                     | InAs         |                                                                   | 132      |
| As(C <sub>6</sub> H <sub>5</sub> ) <sub>2</sub> | 1.7 (20)                    | GaMe <sub>3</sub>                     | GaAs         | 38000                                                             | 110      |
| As(C <sub>6</sub> H <sub>5</sub> ) <sub>2</sub> |                             | GaEt <sub>3</sub>                     | GaAs         | 20000                                                             | 15b      |
| As(C <sub>6</sub> H <sub>5</sub> ) <sub>2</sub> |                             | InMe <sub>3</sub>                     | InAs         |                                                                   | 132a,b   |

<sup>a</sup> At room temperature.

aim of exploring the cause of low C incorporation into GaAs. Two decomposition pathways were suggested for Bu<sup>t</sup>AsH<sub>2</sub>: (a) intramolecular coupling (or, formally, reductive elimination) (which is the dominant path):




(b)  $\beta$ -elimination:

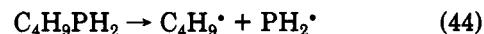


whose importance increased with temperature. It has been later suggested that Bu<sup>t</sup> radical chain reactions are involved in this mechanism.<sup>119</sup>

Furthermore Lum<sup>123</sup> detected As<sub>2</sub>H<sub>4</sub> by mass spectrometry, implying that As<sub>2</sub>H<sub>4</sub> species are also produced in the decomposition reactions. Both (a) and (b) have homogeneous and heterogeneous (on GaAs surfaces) contributions. As Bu<sup>t</sup>AsH<sub>2</sub> decomposes at a lower temperature than GaMe<sub>3</sub>, no substantial modifications are introduced by the presence of GaMe<sub>3</sub>, but conversely Bu<sup>t</sup>AsH<sub>2</sub> greatly decreases the decomposition temperature of GaMe<sub>3</sub> (by 75 °C). AsH<sub>3</sub> is believed to form adducts<sup>45,51</sup> with GaMe<sub>3</sub> in both homogeneous and heterogeneous phases. With Bu<sup>t</sup>AsH<sub>2</sub> analogous adduct formation may occur only partially and only in the homogeneous phase since the following were experimentally observed:

(a) The C<sub>5</sub>H<sub>12</sub>/CH<sub>4</sub> ratio is far less than the 1/2 ratio stoichiometrically expected from the decomposition of the adduct:




(b) The C<sub>5</sub>H<sub>12</sub> amount is insensitive to the substrate surface area.

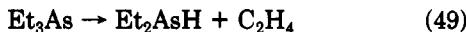
Thus methyl groups are eliminated from partially decomposed organometallic Ga species mainly as CH<sub>4</sub> molecules, through reaction with AsH<sub>x</sub> species produced by decomposition of Bu<sup>t</sup>AsH<sub>2</sub> (see reactions 40 or 41):



AsH species generated by decomposition of Bu<sup>t</sup>AsH<sub>2</sub> are adsorbed on growing GaAs very efficiently at As sites and thus contribute in two ways to avoid C incorporation, i.e., by both occupying positions on the substrate surface where C could be incorporated and eliminating CH<sub>3</sub> groups (possible source of C) through reaction 43. AsH<sub>3</sub> shows the same behavior, but it liberates AsH species at quite

higher temperatures (normally at 600 °C) compared to Bu<sup>t</sup>AsH<sub>2</sub>, which pyrolyzes at about 300 °C; thus fewer As-H species are available to compete for As sites and prevent their occupation by CH<sub>3</sub> radicals (or their decomposition products, e.g., C). It has been reported that Bu<sup>t</sup>PH<sub>2</sub> decomposes heterogeneously on a GaP surface<sup>122</sup> through the reaction chain




This mechanism proposed by Stringfellow et al.<sup>122</sup> is different from one suggested by the same group for the analogous As precursor.<sup>116</sup> An explanation for this could be found in Lum's work, which has been carried out under different reaction conditions (particularly residence times of reactants inside the reactor) and, possibly, greater detection sensitivity.<sup>123</sup>

In the presence of GaMe<sub>3</sub>, there is the possibility for decomposition fragments such as Ga(CH<sub>3</sub>)<sub>x</sub> (x = 1-2, probably 1) to be adsorbed on GaP growing surface and there to react with PH<sub>x</sub> (x = 1-2):



Moreover, adsorption of Ga(CH<sub>3</sub>)<sub>x</sub> diminishes the number of sites on the surface available for adsorption of Bu<sup>t</sup>PH<sub>2</sub> with the effect that the thermal decomposition of Bu<sup>t</sup>PH<sub>2</sub> is slowed in the presence of GaMe<sub>3</sub>, as experimentally observed. Even in this case the availability at low temperature, viz. 400 °C (i.e., much lower than that of PH<sub>3</sub>, which decomposes at 600 °C), of PH<sub>x</sub> type species very active in removing CH<sub>3</sub> radicals accounts for the low C content in GaP and InP grown with Bu<sup>t</sup>PH<sub>2</sub>. It is also important that GaAs, GaP, and InP growth from Bu<sup>t</sup>AsH<sub>2</sub> and Bu<sup>t</sup>PH<sub>2</sub> occurs at a low V/III ratio such as 3:1. Table II summarizes the available data for the growth of III-V materials from alternative As and P precursors. It appears that those compounds possessing EH<sub>x</sub> (x = 1, 2; E = P, As) species lead to less C incorporation and consequently higher purity in epitaxial materials. With Me<sub>3</sub>As,<sup>106,107</sup> Et<sub>3</sub>As,<sup>111</sup> and Me<sub>2</sub>AsH<sup>124</sup> poor results have been obtained

for the growth of GaAs. For  $\text{Et}_3\text{As}$  this is a little surprising since this molecule presumably decomposes thermally via  $\beta$ -elimination<sup>133</sup> in the range 350–430 °C:



producing the same As precursors  $\text{Et}_2\text{AsH}$ , which gave good quality GaAs.<sup>105</sup> Optimization of growth conditions may still be necessary in this case. For  $\text{Me}_2\text{AsH}$ <sup>134</sup> high decomposition temperature and excessive production of  $\text{CH}_3$  radicals (generally considered responsible for high C incorporation) may be the possible causes of unsatisfactory results.

From the considerable body of results described above the following aspects appear of general importance:

(a) C incorporation from organometallic precursors follows the trend Al > Ga > In. Therefore, it reflects the strength of M–C bond, confirming the hypothesis<sup>90</sup> that organometallic species are not completely decomposed before adsorption when they are adsorbed on the substrate surfaces.

(b) Comparing different organic groups bonded to the metal  $\text{CH}_3$  causes more C incorporation than  $\text{C}_2\text{H}_5$ . But this observation is limited to homoleptic compounds; the use of heteroleptic compounds, although promising, is still too limited<sup>104,134</sup> and can lead to complications stemming from alkyl exchange reactions.

(c) High  $[\text{EH}_3]/[\text{MR}_3]$  (E = As, P) ratio reduces C incorporation, but at low reactor pressure C incorporation increases. Concomitantly at these low reactor pressures an increase in the relative amount of  $\text{CH}_3$  radicals is observed even when ethyl compounds are used.<sup>91</sup>

(d) Other important growth parameters ( $T_G$ , growth rate, gas velocity, etc.) may influence C incorporation, but our knowledge currently is still limited.

These considerations lead to the conclusion that C incorporation is a quite complicated phenomenon, possibly resulting from a series of different (elemental) processes occurring simultaneously whose importance varies according to growth conditions. In addition, the different C incorporation depending on the substrate orientation strongly indicates a specific interaction between orbitals of atoms on the growing surface and gaseous species impinging on the substrate itself. Certainly one of the dominant processes leading to C incorporation is the interaction between  $\text{CH}_3$  radicals and other species resulting from the pyrolysis of organometallic compounds. One such species not hitherto discussed in any detail is  $\text{MCH}_3$ , i.e.,

(125) Hostalek, M.; Pohl, L.; Brauers, A.; Balk, P.; Frese, V.; Hardtgen, H.; Hovel, R.; Regel, G. K.; Molassioti, A.; Moser, M.; Scholz, F. *Thin Solid Films* 1989, 174, 1.

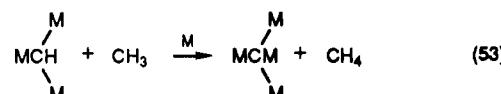
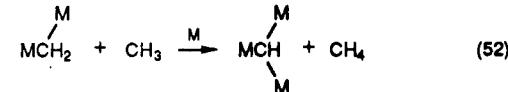
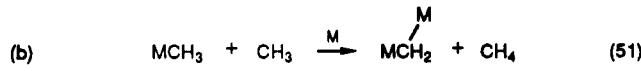
(126) Lopez Coronado, M.; Abril, E. J.; Aguilar, M. Abstracts of 3rd European Workshop on MOVPE, June 4–7 1989, Montpellier; p 70.

(127) Bhat, B.; Koza, M. A.; Skromme, B. *J. Appl. Phys. Lett.* 1987, 50, 1194.

(128) Schmitz, D.; Strauch, G.; Michno, V.; Jurgensen, H.; Melas, A. Abstracts of 3rd European Workshop on MOVPE, June 4–7 1989, Montpellier, late poster B88.

(129) Lum, R. H.; Klingert, J. K.; Lamont, M. G. *Appl. Phys. Lett.* 1987, 50, 284.

(130) Haacke, G.; Watkins, S. P.; Burkhard, H. Abstracts of 3rd European workshop on MOVPE, June 4–7 1989, Montpellier; p 52.

(131) Watkins, S. P.; Haacke, G.; Burkhard, H. Abstracts of 3rd European Workshop on MOVPE, June 4–7, 1989, Montpellier; p 82.

(132) (a) Haywood, S. K.; Martin, R. W.; Mason, N. J.; Walker, P. J. Abstracts of 3rd European Workshop on MOVPE, June 4–7, 1989, Montpellier; p 99. (b) Haywood, S. K.; Martin, R. W.; Mason, N. J.; Walker, P. J. *J. Cryst. Growth* 1989, 97, 489.

(133) Den Baars, S. P.; Maa, B. Y.; Melas, A. *J. Electrochem. Soc.* 1989, 136, 2067.

(134) Frese, V.; Regel, G.; Hardtgen, H.; Brauers, A.; Balk, P.; Hostalek, M.; Lokai, M.; Pohl, L. Abstracts of 3rd European Workshop on MOVPE, June 4–7 1989, Montpellier; p 102.

monomethyl metal derivatives, whose formation as a gas-phase species under MOCVD conditions is not inconsistent with experimental results.<sup>49,120</sup>  $\text{AlCH}_3$  in fact has been observed in UV excimer laser photolysis of  $(\text{AlMe}_3)_2$ ,<sup>135</sup> and  $\text{GaCH}_3$ <sup>136</sup> is believed to be rather stable taking into account the values of the bond dissociation energies<sup>137</sup> of  $\text{Ga}(\text{CH}_3)_3$ , while  $\text{InCH}_3$  should be even more stable in view of the increasing stability of monovalent species with atomic number among the group 13 elements.  $\text{MCH}_3$  species have been often hypothesized or postulated<sup>138–140</sup> to be involved in the crucial step of formation of ME materials (E = As, P) from  $\text{M}(\text{CH}_3)_3$  and  $\text{EH}_3$ . Thus in presence both of  $\text{CH}_3$  radicals and  $\text{E}-\text{H}_x$  species,  $\text{MCH}_3$  can decay through alternative routes:



Route (a) gives the expected material, while route (b) leads stepwise to C incorporation, which on this basis may be considered an intermolecular H abstraction from  $\text{MCH}_3$  fragments by  $\text{CH}_3$  radicals. H abstraction from  $\text{MCH}_3$  organometallic species by  $\text{CH}_3$  radicals has been already proposed in MOCVD mechanistic studies<sup>48,141,142</sup> and may be inferred by the fact that even in  $\text{D}_2$  ambient a significant amount of  $\text{CH}_4$  is formed<sup>45,48</sup> and by the observation<sup>99</sup> that decomposition of  $\text{GaMe}_3$ , even in  $\text{N}_2$  ambient, gives an amount of  $\text{CH}_4$  (and little  $\text{C}_2\text{H}_6$ ) corresponding only to two methyl groups, leaving the third one attached to Ga.<sup>75</sup> Indeed the balance of H atoms requires stripping of at least one H atom from this last  $\text{CH}_3$  group:



to explain the formation of  $\text{CH}_4$  molecules. It is reasonable to hypothesize that bonding between M and C strengthens with concomitant weakening of the C–H bond in the series  $\text{M}-\text{CH}_3$ ,  $\text{M}=\text{CH}_2$  (or  $\text{M}-\text{CH}_2-\text{M}$ ), and  $\text{M}=\text{CH}$ , or



as was found for Al.<sup>143,144</sup> In addition, species containing methylene-metal  $\text{M}=\text{CH}_2$  moiety, in principle, can be formed also via an  $\alpha$ -elimination process:

(135) Zhang, Y.; Stuke, M. *Jpn. J. Appl. Phys.* 1988, 27, L1349.

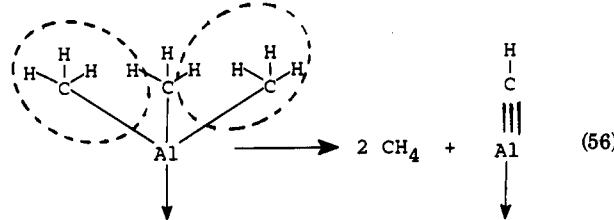
(136) Mitchell, S. A.; Hackett, P. A.; Rayner, D. M.; Humphries, M. R. *J. Chem. Phys.* 1985, 83, 5028.

(137) Kochi, J. H. *Organometallic Mechanisms and Catalysis*; Academic Press: New York, 1978; p 239.

(138) Nishizawa, J.; Kurabayashi, T. *J. Cryst. Growth* 1988, 93, 98.

(139) Tirtowidjojo, M.; Pollard, R. *J. Cryst. Growth* 1988, 93, 108.

(140) Tanaka, H.; Komeno, J. *J. Cryst. Growth* 1988, 93, 115.


(141) Ley, M. R. *Chemtronics* 1988, 3, 179.

(142) Dapkus, P. D.; Den Baars, S. P.; Chen, Q.; Maa, B. Y. In *Mechanism of Reactions of Organometallic Compounds with Surfaces*; Cole-Hamilton, D. J., Williams, J. O., Eds.; *NATO ASI Ser., Ser. B Phys.* 1989, 198, 257.

(143) Eres, D.; Motooka, T.; Gorbatkin, S.; Lubben, D.; Greene, J. E. *J. Vac. Sci. Technol. B* 1987, 5, 848.



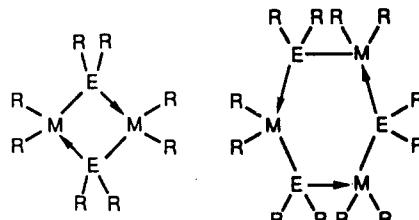
which has been invoked for explaining  $CH_3I$  decomposition on an Al(111) surface.<sup>145,146</sup> Moreover,  $Ti=CH_2$  species have been recently proposed by Girolami et al.<sup>147</sup> as intermediates in TiC preparation via MOCVD from  $Ti(neopentyl)_4$ . Finally pyrolysis of  $AlMe_3$  on a Si(100) surface has been studied<sup>148</sup> by using temperature-programmed desorption, XPS, and EELS techniques. It has been proposed that the observed significant deposit of C (more than one-third of C present in  $AlMe_3$ ) originated from an intramolecular H abstraction formally schematized by the sequence



which differs from that suggested in reactions 51–53 only by its intramolecular character. Analogous considerations have been proposed for the  $GaMe_3$  decomposition on Si(100) studied by a similar method.<sup>149</sup>

**C as Dopant.** The systematic studies carried out on C incorporation have led to an understanding of certain mechanistic aspects and have initiated recent attempts to control the C content in III–V materials demonstrating the feasibility of using C as a p dopant. This is very advantageous in view of the better properties of C (low volatility, low diffusion) with respect to the other common p dopants (Zn and Mg). Thus GaAs with C levels<sup>150</sup> in the range  $10^{16}$ – $10^{19} \text{ cm}^{-3}$  has been intentionally obtained by a choice of the proper composition of a mixture of  $AsH_3$  and  $Me_3As$  as As precursors and a suitable  $T_G$  or by adding  $CCl_4$  to  $H_2$  carrier gas<sup>151</sup> while  $Al_xGa_{1-x}As$  ( $x = 0.75$ ) layers in C p-doped quantum well lasers<sup>152</sup> ( $n = 9 \times 10^{17} \text{ cm}^{-3}$ ) has been grown from  $AlMe_3$ ,  $GaMe_3$ , and  $AsH_3$  at  $T_G = 825^\circ\text{C}$ .

### Alternative Precursors


Thus far the classical group III organometallic and group V hydride precursors have provided a basic contribution to the development of MOCVD at the laboratory scale. However, to fully exploit the potential of this technique, it is necessary to overcome the problems that hinder its application on a production level, i.e., the difficulties inherent in the manipulation of air- and moisture-sensitive organometallic compounds and of extremely toxic arsine and phosphine gases that must be used in high-pressure cylinders. It is likely that the above problems will be solved by taking advantage of the improved knowledge of

the purity effects and understanding of the reaction mechanisms as well as the wide range of possibilities offered by organometallic and coordination chemistry.

**Use of Adducts.** A few years ago the use of Lewis complexes in MOCVD was successfully proposed. Coates et al.<sup>153a</sup> showed that combination of trimethyl or -ethyl derivatives of Al, Ga, and In with Lewis bases of the type  $R_3As$  and  $R_3P$  gave complexes that due to the saturation of the coordination of the central metal were more resistant to hydrolytic decomposition and oxygen attack than the metal alkyls.

Moreover, since they contained As or P in addition to the metals, it was expected that these molecules could act as single precursors and thus avoid the need for  $AsH_3$  and  $PH_3$  as separate precursors.<sup>153b</sup> Although such adducts have been prepared, they have not replaced  $AsH_3$  and  $PH_3$ . In the case of the P-based materials, the problem may be that  $PR_3$  is too resistant to thermolysis at temperatures where  $MR_3$  decomposes. In any case, epitaxial deposition has been rarely observed<sup>105</sup> in such conditions.

**Use of Compounds Containing Direct M–E Bonds.** The use of compounds containing a direct covalent bond between M and E [ $R_{3-n}M(ER_2)_{n/m}$  (M = Al, Ga, In; E = N, P, As, Sb;  $n = 1, 2$ ;  $m = 1, 2, 3$ )]<sup>154,155</sup> offers a wide range of possibilities<sup>9</sup> since through a proper choice of R groups and  $n$  the molecularity of the compounds (i.e., the value of  $m$ ) and hence their volatility<sup>159</sup> and resistance to oxygen and moisture can be conveniently controlled. Unfortunately the lone pair of electrons on the E atoms generally does not contribute to a partial double bond in the molecules such as ( $n = 1$ )  $R_2M=ER_2$ , in which case monomeric molecule formation would be favored. Instead the lone pair is shared with M atoms of another moiety to form dimeric and trimeric species of the type



through bridges in which the two M–E bonds have the same length and are indistinguishable.<sup>9</sup> As a consequence, these compounds generally show a reduced volatility, and their use in MOCVD has been limited thus far. However, at present they are finding wider and wider application in MOMBE, CBE, or low-pressure MOVPE,<sup>9</sup> where the volatility conditions are less stringent.<sup>160</sup>

**Use of Intramolecularly Saturated Compounds.** As previously mentioned, the reactivity of Al, Ga, and In toward  $H_2O$  and  $O_2$  and consequently the pyrophority hazards are due to the coordinative unsaturation of the

(144) Fox, D. J.; Ray, D.; Rubesin, P. C.; Schaefer H. F., III *J. Chem. Phys.* 1980, 73, 3246.

(145) Bent, B. E.; Nuzzo, R. G.; Dubois, L. H. *J. Am. Chem. Soc.* 1989, 111, 1634.

(146) Chen, J. G.; Beebe, T. P., Jr.; Crowell, J. E.; Yater, J. T., Jr. *J. Am. Chem. Soc.* 1987, 109, 1726.

(147) Girolami, G. S.; Jensen, J. A.; Pollina, D. M. *J. Am. Chem. Soc.* 1987, 109, 1579.

(148) Gow, T. R.; Lin, R.; Cadwell, L. A.; Lee, F.; Beckman, A. L.; Masel, R. I. *Chem. Mater.* 1989, 1, 406.

(149) Lee, F.; Gow, T. R.; Masel, R. I. *J. Electrochem. Soc.* 1989, 136, 2640.

(150) Kuech, T. F.; Tischler, M. A.; Wang, P. I.; Scilla, G.; Potemski, R.; Cardone, F. *Appl. Phys. Lett.* 1988, 53, 1317.

(151) Cunningham, B. T.; Haase, M. A.; McCollum, M. J.; Baker, T. E.; Stillman, G. E. *Appl. Phys. Lett.* 1989, 54, 1905.

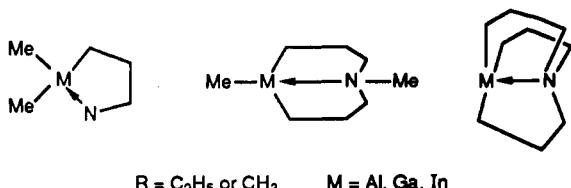
(152) Guido, L. J.; Jackson, G. S.; Hall, D. C.; Plano, W. E.; Holonyak, N. *Appl. Phys. Lett.* 1988, 52, 522.

(153) (a) Coates, G. E.; Wade, K. In *Organometallic Compounds*, 3rd ed.; Methuen and Co.: London, 1967; Vol. 1, p 304. (b) Maury, F.; El Hammadi, A. *J. Cryst. Growth* 1988, 91, 105.

(154) Maury, F.; Constant, G. *Polyhedron* 1984, 3, 581.

(155) Cowley, A. H.; Benac, B. L.; Ekerdt, J. G.; Jones, R. A.; Kidd, K. B.; Lee, J. Y.; Miller, J. E. *J. Am. Chem. Soc.* 1988, 110, 6248.

(156) Jones, A. C.; Jacobs, P. R.; Rushworth, S.; Roberts, J. S.; Button, C.; Wright, P. J.; Oliver, P. E.; Cockayne, B. *J. Cryst. Growth* 1989, 96, 769.


(157) Molassioti, A.; Moser, M.; Stapor, A.; Scholz, F.; Holstalek, M.; Pohl, L. *Appl. Phys. Lett.* 1989, 54, 857.

(158) Staring, E. G. J.; Meekes, G. J. B. M. *J. Am. Chem. Soc.* 1989, 111, 7648.

(159) Higa, K. T.; George, C. *Organometallics* 1990, 9, 275.

(160) Andrews, D. A.; Davies, G. I.; Bradley, D. C.; Faktor, M. M.; Frigo, D. M.; White, E. A. D. *Semicond. Sci. Technol.* 1988, 3, 1053.

central metal in  $R_3M$  compounds. Introduction of donor atoms<sup>125,134,157,161</sup> into the organic group R at a convenient position results in the formation of intramolecularly stabilized compounds of the type



which have been easily prepared replacing Cl atoms in  $Me_2MCl$ ,  $MeMCl_2$ , and  $MCl_3$  with *N*-alkyl groups. They are liquids or low-melting solids moderately resistant to oxygen and water, nonpyrophoric, and sufficiently volatile to be used in MOCVD growth.<sup>157</sup> Electrical properties of materials prepared by using these alternative N-containing precursors are continuously improving<sup>134</sup> probably as a consequence of more efficient purification methods. It is therefore reasonable to expect in the near future that such electrical and morphological properties will be comparable with those obtained by using the classical precursors. It is significant that materials obtained from these precursors do not contain nitrogen which would be expected to compete with As and P in the formation of bonds to M in view of the fact that the enthalpy of the M–N bonds is higher than those of M–As and M–P bonds. Moreover, the PL spectra reported for  $InP^{157}$  grown from  $Me_2In(CH_2)_3NMe_2$  and  $PH_3$  indicated that the dominant residual acceptor impurity was Zn and not C.

**Use of Other New Organo-In and -Al Compounds.** ( $Cp^M$ ) $In$  (indium  $\eta^5$ -methylcyclopentadienyl), a monovalent indium compound, exhibits chemicophysical properties (relatively high volatility at 20 °C, thermal stability in  $H_2$  to high temperature, >500 °C) suitable for MOCVD.<sup>158</sup> It was used in combination with  $PH_3$  (V:III ratio = 33) for the growth of  $InP$ , and the results are very promising at present with  $\mu_{77} = 12250 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ , a C content lower than SIMS detection limits ( $<2 \times 10^{17} \text{ atoms cm}^{-3}$ ), and no parasitic reactions observed. In this respect it may be observed that the  $\eta^5$  mode of ligation of methylcyclopentadienyl tends to electronically saturate the central metal, and premature adduct formation and degradation are thus prevented. Moreover, thermal decomposition leads to stable hydrocarbon fragments (cyclopentadiene isomers, benzene) without leaving residual C.  $Me_2AlNMe_2$  and  $Me_3Al-NMe_3$ <sup>162</sup> have been recently employed in growth of  $Al_xGa_{1-x}As$ , following the suggestion that their  $H_2O$  and  $O_2$  enhanced stability could lead to better material than with  $AlMe_3$ . However due to their limited vapor pressure only  $Al_xGa_{1-x}As$  with  $x < 0.13$  was obtained, and the C content was at the same level as with  $AlMe_3$ . Moreover, in contrast to  $AlMe_3$ , which may contribute to the elimination of  $O_2$  or  $H_2O$  traces present in the reactor, these are rather inert to  $O_2$  and  $H_2O$  and then do not eliminate their deleterious effects. Recently  $Me_2AlBu^t$ <sup>156</sup> has been used in the growth of  $Al_xGa_{1-x}As$  demonstrating a good suitability as MOCVD precursor at low growth temperature notwithstanding the ligand-exchange reaction observed in toluene solution.

**Use of Organo-P and -As Compounds.** The use of less toxic alternative sources to  $AsH_3$  and  $PH_3$  stimulated interest toward organic As and P derivatives as mentioned

before. Trisalkyls (methyl, ethyl) have been demonstrated as not entirely suitable precursors<sup>105</sup> mainly because they pyrolyze at exceedingly high temperatures (higher than  $AsH_3$  and  $PH_3$ ; e.g.,  $PR_3$  failed to give epitaxial material) and C contamination caused by trisalkylarsines was greater than with  $AsH_3$ . Compounds containing at least one As–H or P–H bond have proven more promising.<sup>120</sup> Table II reports several of these new compounds with the results obtained in the growth of III–V epitaxial materials. Good morphological and electrical properties of the materials obtained indicate that the replacement of  $AsH_3$  and  $PH_3$  with less toxic and more easily to be handled precursors may be expected in the near future.

### Future Directions

The bulk of results reported in the previous sections certainly do not include all recently published data on the role that chemistry plays in MOCVD processes. It is hoped that they give a general picture of the enormous progress that has been made recently in our understanding of the fundamental processes that lead up to the preparation of thin-film III–V semiconductors. In our opinion, a knowledge of the chemical aspects of purity, reaction mechanisms, and alternative precursors will be of crucial importance in the near future and will allow the MOCVD technique to improve and develop into new materials systems.

**Purity.** In this area the development of analytical methods and equipment for the assessment of impurities both in precursors and in deposited materials is one important objective. Even though ICP and SIMS are presently very sensitive techniques, they must be improved to compare with levels of detection presently achievable on deposited layers by electrical measurements and photoluminescence spectroscopy. Progress in synthetic methods has improved the purity of precursors, but better techniques and greater efficiency are required in purification methods. In addition to improvement of classical physical separation techniques (distillation and sublimation), adduct-based systems offer considerable promise for further progress.

**Reaction Mechanisms.** The results obtained in this field have a fundamental impact on many aspects of MOCVD technology. Recently, knowledge of parasitic reactions have stimulated appropriate modifications of reactor system design. Studies of C incorporation are now allowing C to be used as a reliable p-type dopant in GaAs. In addition the peculiar features of atmospheric pressure and low-pressure regimes are now becoming clearly understood, and this will lead not only to a choice between APMOCVD (atmospheric pressure MOCVD) and LPMOCVD (low-pressure MOCVD) but also further development of ALE, MOMBE, and CBE. Although thermal decomposition of organoaluminum compounds has been extensively investigated,<sup>163</sup> no specific mechanistic studies of AlAs or AlP formation analogous to those on GaAs or  $InP$  growth have been carried out (e.g., Jensen<sup>44b</sup> and Stringfellow<sup>45,49</sup> under  $D_2$  atmosphere). There is also much to do in adopting the most suitable analytical techniques in order to correctly detect the species involved in the growth process<sup>42</sup> at the substrate surfaces. Sophisticated instrumental methods for in situ studies (which are expected to give more reliable information than ex situ experiments) should be tested more extensively,<sup>164,165</sup> and

(161) Schumann, H.; Hartmann, U.; Dietrich, A.; Pickardt, J. *Angew. Chem., Int. Ed. Engl.* 1988, 27, 1077.

(162) Jones, A. C.; Roberts, J. S.; Wright, P. J.; Oliver, P. E.; Cockaine, B. *Chemtronics* 1988, 3, 152.

(163) Stuke, M.; Zhang, Y. In *Mechanism of Reactions of Organometallic Compounds with Surfaces*; Cole-Hamilton, D. J., Williams, J. O., Eds.; *NATO ASI Ser.; Ser. B Phys.* 1989, 198, 15.

(164) Hebner, G. A.; Killeen, K. P. *J. Appl. Phys.* 1990, 67, 1598.

Table III. Some Alternative Organometallic Precursors Used Recently in MOCVD

| compd                                                                                                                                                                   | phys properties (partial<br>press./mpt/bpt) | mater prepared                                     | mobility,<br>cm <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup> | ref  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------|--------------------------------------------------------------|------|
| [R <sub>2</sub> M-EBu <sup>t</sup> <sub>2</sub> ] <sub>2</sub><br>R = Me, M = Ga, E = As<br>R = Me, M = Al, Ga, In, E = As, P                                           |                                             | GaAs, InP                                          |                                                              | 155  |
| [Me <sub>2</sub> AlBu <sup>t</sup> ] <sub>2</sub>                                                                                                                       | P <sub>29°C</sub> = 0.17 Torr               | Al <sub>x</sub> Ga <sub>1-x</sub> As (x = 0.1-0.3) |                                                              | 156  |
| Me <sub>2</sub> In(CH <sub>2</sub> ) <sub>3</sub> NMe <sub>2</sub>                                                                                                      | mp = 12 °C, bp <sub>500Pa</sub> = 67 °C     | InP                                                | 49 000                                                       | 157  |
| (CH <sub>2</sub> ) <sub>5</sub> Ga(CH <sub>2</sub> ) <sub>3</sub> NMe <sub>2</sub>                                                                                      |                                             | GaAs                                               | 51 000                                                       | 134a |
| (CH <sub>2</sub> ) <sub>5</sub> Ga(CH <sub>2</sub> ) <sub>3</sub> NMe <sub>2</sub> + AlEt <sub>3</sub>                                                                  |                                             | AlGaAs                                             | 8 000                                                        | 134a |
| (CH <sub>2</sub> ) <sub>5</sub> Ga(CH <sub>2</sub> ) <sub>3</sub> NMe <sub>2</sub> + (CH <sub>2</sub> ) <sub>5</sub> Al(CH <sub>2</sub> ) <sub>3</sub> NMe <sub>2</sub> |                                             | Al <sub>0.28</sub> Ga <sub>0.72</sub>              | 15 000                                                       | 134a |
| GaEt <sub>3</sub> + (CH <sub>2</sub> ) <sub>5</sub> Al(CH <sub>2</sub> ) <sub>3</sub> NMe <sub>2</sub>                                                                  |                                             | Al <sub>0.19</sub> Ga <sub>0.81</sub> As           | 6 900                                                        | 134a |
| InMe <sub>2</sub> Et                                                                                                                                                    | P <sub>17°C</sub> = 1.12 Torr               | Ga In As                                           | 45 000                                                       | 68   |
| InMe <sub>2</sub> Et                                                                                                                                                    |                                             | InP                                                | 109 000                                                      | 68   |
| InCp <sup>Me</sup>                                                                                                                                                      | P <sub>20°C</sub> = 0.4 Torr                | InP                                                | 12 250                                                       | 158  |

reasons for discrepancies between *in situ* and *ex situ* experiments clarified. A diagnostic level similar to that in MBE process is required for both surface and gas-phase reactivity. For instance, spectroscopic techniques such as FTIR, optical second harmonic generation (SHG), and reflectance-difference spectroscopy (RDS) need further development for the determination of surface species participating in the growth process. Lessons learned from heterogeneous catalysis could profitably be applied to semiconductor studies.<sup>168</sup>

**Alternative Precursors.** Solution of the two most difficult problems in MOCVD (sensitivity of MR<sub>3</sub> to O<sub>2</sub> and H<sub>2</sub>O and toxicity of AsH<sub>3</sub> and PH<sub>3</sub>) appears close in that some RPH<sub>2</sub> and RAsH<sub>2</sub> derivatives (especially for R = Bu<sup>t</sup>) are able to replace PH<sub>3</sub> and AsH<sub>3</sub>,<sup>167</sup> while new organometallic precursors (e.g., the so called "internally coordinated" compounds) are generally more resistant to O<sub>2</sub> and H<sub>2</sub>O<sup>161</sup> (Table III).

Moreover, the fact that N is not incorporated into Al<sub>x</sub>Ga<sub>1-x</sub>As and InP when N-based precursors are used<sup>157,162</sup> suggests the use of compounds such as R<sub>3-n</sub>M(NR<sub>2</sub>)<sub>n</sub> (n = 1-3),<sup>168</sup> which are also less sensitive to O<sub>2</sub> and H<sub>2</sub>O than classical R<sub>3</sub>M precursors. New clean synthetic reactions based on Me<sub>3</sub>Si group transfer with prospects of leading to III-V semiconductors at low temperatures are under investigation, and promising results have been recently reported by several authors on the preparation of InP, InAs, and GaAs.<sup>169-172</sup>

Finally, it is reasonable to expect that technology will drive toward the preparation of new III-V materials, i.e., new alloys with new properties. At present, interest is directed toward alloys with composition corresponding to immiscibility ranges, i.e., metastable alloys, and toward N-based materials.<sup>173</sup> In fact N-based materials exhibit inviting optical and electronic properties<sup>174</sup> and offer the possibility of fabricating alloys (In<sub>x</sub>Ga<sub>1-x</sub>N, In<sub>x</sub>Al<sub>1-x</sub>N,

Al<sub>x</sub>Ga<sub>1-x</sub>N) with a range of energy gaps from 2 to 6 eV (E<sub>g</sub> are 2, 3.5, and 6 eV for InN, GaN, and AlN, respectively). A few examples<sup>175-178</sup> of epitaxial growth have demonstrated the feasibility but also the difficulties that will be met especially for InN.<sup>179</sup> This material readily decomposes thermally, and MOCVD, with its relatively low temperature growth, is one of the most suitable techniques that can be employed in its preparation.<sup>180</sup> At present it is limited by the paucity of organometallic precursors bearing N ligands, which upon thermal decomposition give MN as the final product. The recent successful preparation of AlN<sup>181,182</sup> will no doubt encourage attempts also in the growth of similar Ga- and In-based materials.

### Conclusion

Intense activity in MOCVD is now producing an enormous amount of experimental data which, although often difficult to explain and contradictory, testify to the inherent complexity of the chemical processes involved. In such a situation the active participation of chemists from a variety of backgrounds is crucial to further development of the field. It is quite amazing that barely understood complex chemical reactions are currently producing high-quality materials with designed electrical and optical properties for industry. Further detailed understanding can only improve the situation.

**Acknowledgment.** We are grateful to CNR, Progetto Finalizzato Materiali Speciali per Tecnologie Avanzate for generous financial support. We also thank Mr. F. Braga for typing the manuscript.

### List of Abbreviations

|       |                                         |
|-------|-----------------------------------------|
| MOCVD | metal organic chemical vapor deposition |
| MOVPE | metal organic vapor-phase epitaxy       |
| MBE   | molecular beam epitaxy                  |
| MOMBE | metal organic molecular beam epitaxy    |
| ALE   | atomic layer epitaxy                    |

(165) Hebner, G. A.; Killeen, K. P.; Biefeld, R. M. *J. Cryst. Growth* 1989, 98, 293.  
 (166) Pemble, M. E. *Chemtronics* 1987, 2, 13.  
 (167) Miller, G. A. *Solid State Technol.* 1989, 8, 59.  
 (168) (a) Aitchison, K. A.; Backer, J. D. J.; Bradley, D. C.; Faktor, M. M.; Frigo, D. M.; Hursthouse, M. B.; Hussain, B.; Short, R. L. *J. Organomet. Chem.* 1989, 366, 11. (b) Rossetto, G.; Ajo', D.; Brianese, N.; Casellato, U.; Ossola, F.; Porchia, M.; Vittadini, A.; Zanella, P.; Graziani, R. *Inorg. Chim. Acta* 1990, 170, 95.  
 (169) Healy, M. D.; Laibinis, P. E.; Stupik, P. D.; Barron, A. R. *J. Chem. Soc., Chem. Commun.* 1989, 359.  
 (170) Wells, R. L.; Pitt, C. G.; McPhail, A. T.; Purdy, A. P.; Shafieezad, S.; Hallock, R. B. *Chem. Mater.* 1989, 1, 4.  
 (171) Byrne, E. K.; Parkanyi, L.; Theopold, K. H. *Science* 1988, 241, 332.  
 (172) Steigerwald, M. L.; Stuezynski, S. M.; Brennan, J. G. 198th National Meeting of the ACS, Miami Beach, Sept 10-15, 1989; Comm. 283.  
 (173) Amano, H.; Hiramatsu, K.; Kito, M.; Sawaki, N.; Akasaki, I. *J. Cryst. Growth* 1988, 93, 79.  
 (174) Jenkins, D. W.; Dow, J. D. *Phys. Rev. B* 1989, 39, 3317.  
 (175) Sasaki, T.; Matsuoka, T. *J. Appl. Phys.* 1988, 64, 4531.  
 (176) Koide, Y.; Itoh, H.; Sawaki, N.; Akasaki, I. *J. Electrochem. Soc.* 1986, 133, 1956.  
 (177) Matloubian, M.; Gershenson, M. *J. Electron. Mater.* 1985, 14, 633.  
 (178) Nagatomo, T.; Kuboyama, T.; Minamino, H.; Omoto, O. *Jpn. J. Appl. Phys.* 1989, 28, L1334.  
 (179) Wakahara, A.; Yoshida, A. *Appl. Phys. Lett.* 1989, 54, 709.  
 (180) Davis, R. F.; Sitar, Z.; Williams, B. E.; Kong, H. S.; Kim, H. J.; Palmour, J. W.; Edmond, J. A.; Ryu, J.; Glass, J. T.; Carter, C. H., Jr. *Mater. Sci. Eng. B1* 1988, 77.  
 (181) Interrante, L. V.; Sigel, G. A.; Garbauskas, M.; Hejna, C.; Slack, G. A. *Inorg. Chem.* 1989, 28, 252.  
 (182) Boyd, D. C.; Haasch, R. T.; Mantell, D. R.; Schulze, R. K.; Evans, J. F.; Gladfelter, W. L. *Chem. Mater.* 1989, 1, 119.

|                  |                                                            |          |                                                                          |
|------------------|------------------------------------------------------------|----------|--------------------------------------------------------------------------|
| CBE              | chemical beam epitaxy                                      | $N_A$    | number of acceptors $\text{cm}^{-3}$                                     |
| R                | alkyl group                                                | PL       | photoluminescence                                                        |
| Me               | $\text{CH}_3$ , methyl                                     | CARS     | coherent anti-Stokes Raman Spectroscopy                                  |
| Et               | $\text{CH}_2\text{CH}_3$ , ethyl                           | TMG      | trimethylgallium, $\text{Ga}(\text{CH}_3)_3$                             |
| Bu <sup>i</sup>  | $\text{CH}(\text{CH}_3)(\text{C}_2\text{H}_5)$ , isobutyl  | TEG      | triethylgallium, $\text{Ga}(\text{C}_2\text{H}_5)_3$                     |
| Bu <sup>t</sup>  | $\text{C}(\text{CH}_3)_3$ , <i>tert</i> -butyl             | TMA      | trimethylaluminum, $\text{Al}(\text{CH}_3)_3$                            |
| Neop             | $\text{CH}_2\text{C}(\text{CH}_3)_3$ , neopentyl           | TEA      | triethylaluminum, $\text{Al}(\text{C}_2\text{H}_5)_3$                    |
| Cp <sup>Me</sup> | $\text{C}_5\text{H}_4\text{CH}_3$ , methylcyclopentadienyl | TMIn     | trimethylindium, $\text{In}(\text{CH}_3)_3$                              |
| Ph               | $\text{C}_6\text{H}_5$ , phenyl                            | TEIn     | triethylindium, $\text{In}(\text{C}_2\text{H}_5)_3$                      |
| ERD              | elastic recoil detection                                   | $T_G$    | temperature at which the material is grown                               |
| ICPAES           | inductively coupled plasma atomic emission spectroscopy    | $T_{50}$ | temperature corresponding to 50% decomposition of a particular precursor |
| ICP              | inductively coupled plasma                                 | XPS      | X-ray photoelectron spectroscopy                                         |
| $\mu$            | electron mobility                                          | SHG      | second harmonic generation                                               |
| SIMS             | secondary ion mass spectrometry                            | EELS     | electron energy loss spectroscopy                                        |
| $N_D$            | number of donors $\text{cm}^{-3}$                          | RDS      | reflectance difference spectroscopy                                      |

## $\alpha'$ -Sialon Ceramics: A Review

G. Z. Cao and R. Metselaar\*

*Eindhoven University of Technology, Center for Technical Ceramics, P.O. Box 513, 5600MB, Eindhoven, The Netherlands*

*Received May 22, 1990. Revised Manuscript Received December 3, 1990*

$\alpha'$ -Sialons are a relatively new class of ceramics that promise excellent high-temperature mechanical properties and thermal shock resistance. This report reviews the current status of research on  $\alpha'$ -sialons, including phase equilibria, formation, sintering, and properties.

### Introduction

Silicon nitride and oxynitride ceramics have attracted interest for high-temperature engineering applications for nearly 40 years,<sup>1-4</sup> because of their excellent properties: (1) high strength; (2) wear resistance; (3) high decomposition temperature; (4) oxidation resistance; (5) thermal shock resistance; (6) low coefficient of friction; (7) resistance to corrosive environments.

The formation of silicon nitride ( $\text{Si}_3\text{N}_4$ ) was reported about a century ago.<sup>5-7</sup> However, fully dense silicon nitride ceramics were obtained by hot-pressing only in 1961.<sup>8</sup> Huge efforts on the investigation of silicon nitride ceramics have been made in the past three decades, resulting in a tremendous progress.<sup>9,10</sup>

Good mechanical properties of silicon nitride ceramics are achieved only in fully dense materials. But as a highly covalent compound, silicon nitride exhibits a very low diffusivity<sup>11-15</sup> and therefore cannot be densified by using

conventional solid-state sintering methods. Instead densification has been achieved by means of liquid-phase sintering. To this end sintering additives are used, for instance, metal oxides, such as  $\text{MgO}$ ,  $\text{Al}_2\text{O}_3$ ,  $\text{Y}_2\text{O}_3$ , and  $\text{Ln}_2\text{O}_3$ ,<sup>16-23</sup> but some metals, carbides, and nitrides have been tried as well.<sup>24-27</sup> At high temperatures these additives react with both the oxygen-rich layer, which is always present at the surface of each silicon nitride particle,<sup>28,29</sup> and a small fraction of silicon nitride to form an

- (1) Collins, J. F.; Gerby, R. W. *J. Met.* 1955, 7, 612.
- (2) Sage, A. M.; Histed, J. H. *Powder Metall.* 1961, 4, 196.
- (3) Parr, N. L. *Research (London)* 1960, 13, 261.
- (4) Popper, P.; Ruddlesden, S. N. *Trans. Brit. Ceram. Soc.* 1961, 60, 603.
- (5) Schützenberger, P. *Compt. Rend.* 1879, 2, 644.
- (6) Schützenberger, P.; Colson, A. *Compt. Rend.* 1881, 92b, 1508.
- (7) Weiss, L.; Engelhardt, T. *Z. Anorg. Chem.* 1910, 65, 38.
- (8) Deeley, C. G.; Herbert, J. M.; Moore, N. C. *Powder Metall.* 1961, 4, 145.
- (9) See, for instance: *High-Technology Ceramics*; Vincenzini, P., Ed.; Elsevier Science Publishers B.V.: Amsterdam, 1987.
- (10) See, for instance: *Progress in Nitrogen Ceramics*; Riley, F. L., Ed.; NATO ASI Series E65; Martinus Nijhoff: The Hague, 1983.
- (11) Kijima, K.; Shirasaki, S. *J. Chem. Phys.* 1976, 65, 2668.
- (12) Kunz, K. P.; Sarin, V. K.; Davis, R. F.; Bryan, S. R. *Mater. Sci. Eng.* 1988, A105/106, 47.
- (13) Batha, H. D.; Whitney, E. D. *J. Am. Ceram. Soc.* 1973, 56, 365.
- (14) Cooper, A. R.; Major, L. D. NTIS, Rep. AD-A-069004, 1979.
- (15) Wuensch, B. J.; Vasilos, T. NTIS, Final Rep. Ad-A-021175, 1975.
- (16) Gazzola, G. E. *J. Am. Ceram. Soc.* 1973, 56, 662.
- (17) Loehmen, R. E.; Rowcliffe, D. J. *J. Am. Ceram. Soc.* 1980, 63, 144.
- (18) Mazdiya, K. S.; Cooke, C. M. *J. Am. Ceram. Soc.* 1974, 57, 536.
- (19) Huseby, I. C.; Petzow, G. *Powder Metall. Int.* 1974, 6, 16.
- (20) Negita, K. *J. Mater. Sci. Lett.* 1985, 4, 755.
- (21) Ueno, K.; Toibana, T. *Yogyo-Kyokai-Shi* 1983, 91, 409.
- (22) Xu, Y. R.; Huang, L. P.; Fu, X. R.; Yan, D. S. *Sci. Sin.* 1985, A28, 556.
- (23) Hirosaki, N.; Okada, A.; Matoba, K. *J. Am. Ceram. Soc.* 1988, 71, C-144.
- (24) Greskovich, C.; O'Clair, C. R. U.S. Patent No. 93687, 1977.
- (25) Lange, F. F. *J. Am. Ceram. Soc.* 1973, 56, 445.
- (26) Prochazka, S.; Greskovich, C. D. Rep. AMMRC-TR78-32, 1978, SRD-77-178.
- (27) Greskovich, C. D.; Prochazka, S.; Rosolowski, D. H. Rep. APML-TR-76-179, 1976, SRD-76-151.
- (28) Singhal, S. C. *Ceram. Int.* 1976, 2, 123.